
September 20, 2018

KimTree version 2.0.1

User Manual

KimTree code c© INRA
This document c© Renaud Vitalis 2017

http://www.inra.fr/en

Contents

1 Overview 3

2 Before you start 3
2.1 How to get KimTree? . 3
2.2 How to compile KimTree? 3

3 Underlying principles of KimTree 4
3.1 The data . 4
3.2 The population genetics model 4
3.3 The framework for statistical inference 5

4 Using KimTree 7
4.1 Input files format . 7

4.1.1 Input tree . 7
4.1.2 Allele count data (by default) 8
4.1.3 Read count data (using the -pool option) 9

4.2 Running KimTree . 9
4.3 Sanity checks . 10

4.3.1 Assessing convergence 10
4.3.2 Checking mixing properties 10

4.4 Interpreting the results . 11
4.5 Worked example . 11
4.6 Details of KimTree options 13
4.7 Format of the output files . 17

5 Credits 19

6 Copyright 20

7 Contact 20

Bibliography 21

2

1 Overview

The software package KimTree implements a hierarchical Bayesian model
to estimate divergence times in a population tree, from allele count data at
many single-nucleotide polymorphisms (SNPs) (Gautier and Vitalis, 2013).
In KimTree, the allele frequencies are modelled along each branch of a
specified tree, using Kimura’s time-dependent diffusion approximation for
genetic drift (Kimura, 1964). The joint analysis of autosomal and X-linked
polymorphisms allows KimTree to infer the effective sex ratios or ESR
(defined as the female proportion of the effective population), along each
branch (Clemente et al., 2018). KimTree is written in C programming lan-
guage. The source code is available under the GNU General Public License
(see http://www.gnu.org/licenses/gpl-3.0.en.html). Once compiled,
the KimTree binary reads data files supplied by the user, and a number of
options can be passed through the command line. This document provides
information on how to format the data files, how to specify the user-defined
parameters, and how to interpret the results.

2 Before you start

2.1 How to get KimTree?

Download the archive from http://www1.montpellier.inra.fr/CBGP/software/

kimtree/, and extract it from a terminal:

tar -xzvf kimtree_2.0.1.tar.gz

Binaries for OS X, Windows, Linux are not available. Therefore, you need to
recompile KimTree from the source files provided (see the next subsection).

2.2 How to compile KimTree?

The source files are available in the src subdirectory. KimTree is coded
using C programming language and can therefore be compiled for any system
supported by gcc. To do so, Windows users may need to get a gcc compiler,
e.g. by installing MinGW, mingw-64, or Cygwin. To compile the code and
get the kimtree binary, use the Makefile provided:

make clean all

KimTree uses OpenMP to implement multithreading, which allows parallel
calculation on computer systems that have multiple CPUs or CPUs with mul-
tiple cores. The gcc version included with OS X may generate executable code

3

http://www.gnu.org/licenses/gpl-3.0.en.html
http://www1.montpellier.inra.fr/CBGP/software/kimtree/
http://www1.montpellier.inra.fr/CBGP/software/kimtree/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://www.mingw.org/
http://mingw-w64.org/doku.php
https://sourceware.org/cygwin/
http://www.openmp.org/resources/openmp-compilers/
http://gcc.gnu.org/

that results in runtime error (“Abort trap: 6”) when more than one thread is
used. In that case, you first need to install a recent version of gcc, following
the instructions in http://hpc.sourceforge.net/. Then, you can recom-
pile KimTree using (assuming gcc has been installed in /usr/local/):

make clean all CC=/usr/local/bin/gcc

3 Underlying principles of KimTree

KimTree is a method designed to estimate divergence times on a diffu-
sion time scale from large single-nucleotide polymorphism (SNP) data sets,
conditionally on a population history represented as a multifurcating tree.

3.1 The data

By default, the data consist of allele counts at many SNPs, collected from in-
dividuals sampled in a set of populations. KimTree can also handle pooled-
population genotyping data, using the -pool option. In that case, the data
consist of read counts, collected from population pools. Given the allele
frequencies in each pool, the conditional distribution of read counts is then
assumed to be binomial (see Günther and Coop, 2013; Gautier, 2015).

When X-linked polymorphisms are available, KimTree provides estimate
of effective sex ratios or ESR (defined as the female proportion of the effective
population) for each branch of the rooted tree topology that summarizes
the history of the populations of interest. To do so, the X-linked data are
provided in an additional file, using the -Xfile option.

3.2 The population genetics model

The method is based on a diffusion approximation for the distribution of allele
frequencies in multiple populations, whose demographic history is represented
as a multifurcating tree. We recommend you read carefully the details of the
models in Gautier and Vitalis (2013) and Clemente et al. (2018). Consider
a sample of populations sharing a common history, represented as a tree. At
each locus, assuming Hardy-Weinberg Equilibrium (HWE) in each sampled
population, the conditional distribution of the observed count of the reference
allele (which is arbitrarily defined) is binomial, given the sample size and
the (unknown) allele frequency. In the absence of mutation, assuming that
branch i with effective size Ne,i diverged from its ancestor for ti discrete
non-overlapping generations, the distribution of the allele frequency in the
ith branch of the tree, conditional upon the allele frequency in the parental

4

http://gcc.gnu.org/
http://hpc.sourceforge.net/

population and the branch length τi ≡ ti/ (2Ne,i), is given by Kimura’s time-
dependent diffusion approximation (see Eqs 4.9 and 4.16 in Kimura (1964)).
The integration over the allele frequencies along all the branches of the tree
is then achieved by means of a hierarchical Bayesian model, which is detailed
in Gautier and Vitalis (2013) and Clemente et al. (2018).

In Gautier and Vitalis (2013), the prior distribution of the frequency
πj of the reference allele in the root population followed a beta distribu-
tion Beta(1.0, 1.0). In Clemente et al. (2018), the model has been improved
in several directions. First, KimTree has been extended to estimate the
hyper-parameters of the Beta(α, β) prior for allele frequencies in the root
population. Estimating the hyper-parameters of the beta distribution allows
for a more flexible allele frequency distribution at the root, potentially shift-
ing the total age of the tree. This option is set by default. However, the
user may fix the values of the parameters α and β, as in Gautier and Vitalis
(2013), using the option -fixed_beta, in which case their values is set using
the options -beta_a and -beta_b, respectively (by default, α = β = 0.7).
Second, the model has been extended to account for the fact that the dataset
consists, by construction, of polymorphic sites only. In SNP datasets, indeed,
sites that are fixed across the entire sample have been filtered out. This is
a non-trivial issue, since the fraction of sites that are monomorphic in the
sample, but were polymorphic in the root population, contains information
on the branch lengths. Ignoring this information may therefore result in bi-
ased estimates of the branch lengths. This is set by default, but may be
unset using the option -unascertained. Last, the model was extended to
jointly analyze allele frequencies from both autosomal and X-linked mark-
ers and provide estimates of the ESR for each branch of the tree. In that
case, X-linked data must be provided using the option -Xfile to specify the
filename.

3.3 The framework for statistical inference

The framework for statistical inference from this model consists in a hier-
archical Bayesian model (see Gelman et al., 2004), for which the directed
acyclic graph (DAG) is shown in Figure 1. KimTree is based on a com-
ponentwise Markov chain Monte Carlo (MCMC) algorithm to sample from
the joint posterior distribution of the model parameters. Some parameters
of the MCMC algorithm can be adjusted by the user. In particular, proposal
distributions are adjusted during short pilot runs, in order to get acceptance
rates between 0.25 and 0.40 (see, e.g., Gilks et al., 1996). After the pilot
runs, a burn-in period may be defined, before samples are drawn from the
Markov chain. Then, samples are taken from the chain, with the number

5

α(A)β(A) α(X) β(X)

x
(A)
5j x

(X)
5jτ

(A)
4 , τ

(X)
4 τ

(A)
3 , τ

(X)
3

τ
(A)
2 , τ

(X)
2x

(A)
4j x

(X)
4jτ

(A)
1 , τ

(X)
1

x
(A)
3j x

(X)
3j

y
(A)
3j y

(X)
3j

x
(A)
2j x

(X)
2j

y
(A)
2j y

(X)
2j

x
(A)
1j x

(X)
1j

y
(A)
1j y

(X)
1j

Figure 1: Directed acyclic graph (DAG) of the hierarchical Bayesian
model for a three-population example tree. This graph represents
the most complete model with both autosomal (A) and X-linked (X) data.
Because all parameters and data are specific to one or the other genetic
system, we use the index Ω (Ω ∈ {A,X}). With autosomal data only, the
DAG is simplified by removing all parameters and data with index (X). The

square nodes characterize the data, i.e. y
(Ω)
ij (Ω ∈ {A,X}) represents the

observed allele counts from autosomal and X-linked data in population i at
SNP j. The circles and rounded rectangles represent the parameters to be
estimated: x

(Ω)
ij is the (unknown) allele frequency in population i; τ

(Ω)
i is

the length (in a diffusion time scale) of the branch leading to population i;
α(Ω) and β(Ω) are the shape and scale parameters of the beta distribution,
which describes the allele frequency distribution πj in the root population.
Unidirectional edges (arrows) represent direct stochastic relationships within
the model. They indicate the conditional dependency between connected
nodes. If the -pool option is set, then the data consist in read counts, that
depend upon the (unobserved) allele counts. If the option -fixed_beta is
set, then the parameters α and β of the (beta) prior distribution of πj are
not estimated.

6

of iterations between any two samples set by the thinning interval. This is
aimed at reducing autocorrelation between successive values of the parame-
ters along the Markov chain. Typically (as set by default) 100,000 updating
steps are completed after 25 short pilot runs of 1,000 iterations each and a
burn-in of 25,000 steps. All the model parameters are sampled every 25 steps
(thinning), yielding 5,000 observations.

4 Using KimTree

4.1 Input files format

4.1.1 Input tree

In KimTree, the topology needs to be specified a priori. The topology is
encoded an oriented tree (see, e.g., Kelleher et al., 2016). An oriented tree
is a sequence of integers π1, π2, . . . , πu, such that πu is the parent node of
u and u is the root if πu = 0. In KimTree, we further assume that the
sampled populations (leaf nodes) are mapped to the integers 1, . . . , n. For
every internal node u, we have n < u < 2n. By convention, the last integer in
the sequence is the root node of the tree. Therefore, for a strictly bifurcating
tree, the 2n− 2 non-zero entries occur at u = 1, . . . , 2n− 2, and the root is
2n−1 (i.e., π2n−1 = 0). For example, a tree formatted as ((1, 2), 3) in Newick
format would read:

--- file begins here ---

4 4 5 5 0

--- file ends here ---

A star-shaped tree formatted as (1, 2, 3, 4, 5) in Newick format would read:

--- file begins here ---

6 6 6 6 6 0

--- file ends here ---

A more complex tree formatted as (((1, 2), 3), (4, 5, 6)) in Newick format
would read:

--- file begins here ---

7 7 8 9 9 9 8 10 10 0

--- file ends here ---

These example oriented trees are represented in Figure 2. These figures can
easily be obtained using the R function draw.tree() from the KimTree.R

7

http://www.r-project.org/

file in the R subdirectory of the archive. The draw.tree() function can
therefore be used beforehand, in order to check any tree topology considered
for KimTree analyses.

●1 ●2

●3

●4

● ● ●

●

●

● ● ●

●

●

1 2 3

4

5

A.

●1 ●2 ●3 ●4 ●5

● ● ● ● ●

●

● ● ● ● ●

●

1 2 3 4 5

6

B.

●1 ●2

●3

●7

●4 ●5 ●6

●8 ●9

● ● ● ● ● ●

●

● ●

●

● ● ● ● ● ●

●

● ●

●

1 2 3 4 5 6

7

8 9

10

C.

Figure 2: Example oriented trees. From left-to-right, these trees
are defined by the sequences 〈4, 4, 5, 5, 0〉 (A), 〈6, 6, 6, 6, 6, 0〉 (B) and
〈7, 7, 8, 9, 9, 9, 8, 10, 10, 0〉 (C). The node numbers are indicated within circles,
and the branch numbers (that correspond to the numbers given in KimTree
output files) are indicated at the midpoint of each branch.

4.1.2 Allele count data (by default)

The data file reads as follows:

--- file begins here ---

6

100

81 19 86 14 2 98 8 92 32 68 23 77

89 11 81 19 9 91 1 99 27 73 27 73

89 11 91 9 11 89 15 85 77 23 80 20

[...97 more lines...]

--- file ends here ---

In this example, there are 6 populations (the first number in the file), and
100 SNPs (the second number in the file). Each line that follows corresponds

8

to one SNP. The number of columns is twice the number of populations.
Each pair of numbers corresponds to the allele counts in one population. For
example, at the first SNP, in the first population, there are 81 copies of the
first allele, and 19 copies of the second allele. In the second population, there
are 86 copies of the first allele, and 14 copies of the second allele, etc.

4.1.3 Read count data (using the -pool option)

The data file reads as follows:

--- file begins here ---

6

100

50 50 50 50 50 50

71 8 115 0 61 36 51 39 10 91 69 58

82 0 91 0 84 14 24 57 28 80 18 80

93 28 112 30 90 48 0 113 33 68 0 106

[...97 more lines...]

--- file ends here ---

In this example, there are 6 populations (the first number in the file), and
100 SNPs (the second number in the file). The size of each pool (expressed as
a number of genes, i.e. twice the number of diploid individuals) is indicated
in line 3. In the above example, each pool is made of 50 gene copies (25
diploid individuals). Each line that follows corresponds to one SNP. The
number of columns is twice the number of populations. Each pair of numbers
corresponds to the allele counts in one population. For example, at the first
SNP, in the first population, there are 71 reads of the first allele, and 8 reads
of the second allele. In the second population, there are 115 reads of the first
allele, and 0 read of the second allele, etc.

4.2 Running KimTree

KimTree is a command-line executable. The ASCII hyphen-minus (“-”) is
used to specify options. As specified below, some options take integer or float
values and some options do not. Here is an example call of the program:

./kimtree -threads 8 -file infile.dat -tree tree.dat

-outputs example -thin 20 -npilot 5 -burnin 1000

-length 10000

9

In this example run, some (autosomal) data would be read from the file
infile.dat, the topology would be read from the file tree.dat and the
outputs would be printed out in the example/ subdirectory. 10,000 updating
steps would be completed after 5 short pilot runs of 1,000 iterations each
and a burn-in of 1,000 steps. The calculations would use 8 threads. Samples
would be collected for all the model parameters every 20 steps (thinning),
yielding 500 observations. All the options are detailed below, in § 4.6, and
the list of output files is provided in § 4.7.

4.3 Sanity checks

4.3.1 Assessing convergence

We advise to assess convergence, e.g., by computing the multivariate
extension of Gelman–Rubin’s diagnostic (Brooks and Gelman, 1998)
on independent Markov chains. The Gelman–Rubin’s diagnostic is
based on the computation of the ratio of the pooled-chains variance
over the within-chain variance. The Gelman–Rubin’s diagnostic can
be calculated using the coda package (Plummer et al., 2006), as imple-
mented for R (R Core Team, 2017), using the traces of the τi and the
(α,β) parameters that are printed out in the trace_tau.out file and
the trace_beta.out file, respectively.

10

4.3.2 Checking mixing properties

Also, we strongly recommend assessing the mixing properties of
the MCMC by inspecting the trace of the parameters in the
trace_xxx.out files. The trace shall show relatively good mixing
(reasonably low autocorrelation, AND random variation around a sta-
tionary value). The autocorrelation can be measured using the coda

package (Plummer et al., 2006), as implemented for R (R Core Team,
2017). Otherwise, you may want to increase the length of the burn-in
period and/or the total length of the Markov chain. KimTree also
reports the effective sample size (ESS) for various parameters in the
logfile.log output file. The ESS is a measure of how well a Markov
chain is mixing. The ESS represents the number of effectively inde-
pendent draws from the posterior distribution that the Markov chain
is equivalent to (then the ESS must be compared to the chain length).
Low ESS (due to strong autocorrelation) indicates poor mixing of the
Markov chain.

4.4 Interpreting the results

Bayesian inference is based on evaluation of the posterior distribution. The
posterior distributions of the model parameters can be plotted using the
trace_xxx.out output files. Also, the mean and standard deviation of the
model parameters are saved in the summary_xxx.out output files.

Because the tree topology is generally unknown, we implemented a model
choice procedure to characterize, for any given dataset, the strength of ev-
idence for alternative population histories. Following Gautier and Vitalis
(2013), we used the deviance information criterion (DIC), which is a stan-
dard criterion for model selection Spiegelhalter et al. (2002). The DIC.out

output file contains the value of the DIC. Models with smaller DIC should
be preferred to models with larger DIC.

4.5 Worked example

In the following, it is assumed that the current (working) directory is at
the root of the kimtree_2.0.1.tar.gz archive, that contains several files
and subdirectories (data/, man/, R/ src/). From a terminal, execute the
following command line:

11

./src/kimtree -npilot 20 -lpilot 500 -burnin 10000

-length 20000 -thin 20 -file /data/auto.dat

-Xfile /data/chrx.dat -tree /data/test.tre

-threads 8 -outputs run-example/

In this example run, the autosomal data are read from the data/auto.dat

file, the X-linked data from the data/chrx.dat file, and the tree topology
from the data/test.tre file. The outputs are printed out in the run-example/
subdirectory. The data consist in a simulation of a four-population tree with
topology ((1,2),(3,4)). The root population was made of 50,000 males and
50,000 females, and the internal branches correspond to populations made
of 5,000 males and 5,000 females. Branch 1 was made of 1,000 females and
9,000 males (ξ1 = 0.1); branch 2 was made of 2,000 females and 8,000 males
(ξ2 = 0.2); branch 3 was made of 9,000 females and 1,000 males (ξ3 = 0.9);
branch 4 was made of 8,000 females and 2,000 males (ξ4 = 0.8). The two
successive splits occurred 1,000 and 3,000 generations before present time.
The mutation rate was fixed at µ = 1.5 × 10−7. 50 females were sampled
per population, and genotyped at 5,000 autosomal SNPs and 5,000 X-linked
SNPs.

Once KimTree has been executed, you may analyze the results, using
R. To do so, launch R, and set the working directory to the root of the
archive, using the setwd() function. Then, you may represent the posterior
distributions of the ESR for each branch using, e.g.:

> library(vioplot)

> xi <- read.table("trace_xi.out",header = TRUE)

> plot(1,xlim = c(0.75,6.25),ylim = c(0,1),

ylab = expression(Branch-specific~sex-ratio~(xi)),

xlab = "Branch",type = "n",cex.lab = 1.25)

> vioplot(xi$deme_1,xi$deme_2,xi$deme_3,xi$deme_4,

xi$deme_5,xi$deme_6,col = "lightblue",add = TRUE)

12

http://www.r-project.org/
http://www.r-project.org/

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Branch

B
ra
nc
h
−
sp
ec
ifi
c
se
x
−
ra
tio

 (ξ
)

Alternatively, summaries (mean and standard deviation) of the model pa-
rameters are saved in the summary_xxx.out output files. Also, one can use
the R function draw.tree() from the KimTree.R file in the R subdirectory
of the archive, to plot the tree topology using the estimated values of the
branch lengths:

> source(R/KimTree.R)

> draw.tree(tree_file = "data/test.tre",n = 4,

summary_tau_file = "outputs/summary_tau_auto.out",

leafs = TRUE,nodes = FALSE,edges = FALSE)

0.
00

0.
05

0.
10

0.
15

0.
20

B
ra

nc
h

le
ng

th

1

2

3

4

Last, the DIC.out file contains the value of the deviance information

13

http://www.r-project.org/

criterion (DIC) Spiegelhalter et al. (2002), which may be used to choose
between alternative histories.

4.6 Details of KimTree options

-help

This option prints out the full list of options accepted by KimTree,
i.e.:

usage: ./kimtree [options]

valid options are :

-help print this message

-version print version

-file name of the input data file (default: data.dat)

-Xfile name of the input file for X-linked data

-tree name of the input tree file (default: data.tre)

-outputs directory where the outputs will be produced (default: current directory)

-seed initial seed for the random number generator (default: computed from current time)

-threads number of threads to be used (default: number of cpu available)

-length run length of the Markov chain (default: 125000)

-thin thinning interval size (default: 25)

-burnin length of the burn-in period (default: 25000)

-npilot number of pilot runs (default: 25)

-lpilot length of each pilot run (default: 1000)

-pool option to analyse data from pooled DNA samples (default: unset)

-unascertained option to compute the likelihood for unascertained data (default: unset)

-fixed_beta option to fix the shape parameters of the beta prior distribution of pi (default: unset)

-beta_a shape parameter (a) of the prior for allele frequencies alpha_ir’s in the root node (default: 0.70)

-beta_b shape parameter (b) of the prior for allele frequencies alpha_ir’s in the root node (default: 0.70)

-dlt_cnt half window width from which updates of allele counts are randomly drawn (default: 5)

-dlt_frq half window width from which updates of alpha are randomly drawn (default: 0.25)

-dlt_tau half window width from which updates of tau are randomly drawn (default: 0.025)

-dlt_beta_mu half window width from which updates of the beta mu parameters are drawn (default: 0.025)

-dlt_beta_nu standard deviation of the lognormal distribution from which updates of the beta nu parameters are

drawn (default: 1.00)

-verbose option to print the traces of all parameters (generates big output files!)

-version

This option prints out the KimTree version.

-file

This option gives the name of the input file. If the option is not speci-
fied, the input file name is “data.dat”.

-Xfile

This option gives the name of the input file for X-linked data.

-tree

This option gives the name of the input file for the tree topology.

-outputs

14

This option gives the directory where all the outputs will be saved. If
the option is not specified, then all the output files will be saved in the
current directory (where kimtree is executed).

-seed

This option gives the initial seed (integer) for the random number gen-
erator. If the option is not specified, then the initial seed is computed
from the current computer time. Note that because KimTree code is
parallelized, two different runs with the same initial seed may provide
different sequences of random numbers, hence different outputs.

-threads

This option gives the number of threads to be used. If the option is
not specified, then all available cpu are used.

-length

This option gives the total length of the MCMC (i.e., the number of
iterations run after the burn-in period). By default, length = 50000
(i.e., -length 50000).

-thin

This option gives the size of the thinning (i.e., the number of iterations
between any two records from the MCMC). By default, thin = 25 (i.e.,
-thin 25).

-burnin

This option gives the length of the burn-in period (i.e., the number of
iterations before the first record from the MCMC). By default, -burnin
= 10000 (i.e., -burnin 10000).

-npilot

This option gives the number of pilot runs (i.e., the number of runs
used to adjust the parameters of the MCMC proposal functions, to get
acceptance rates between 0.25 and 0.40). By default, -npilot = 25
(i.e., -npilot 25).

-lpilot

15

This option gives the length of each pilot run (i.e., the number of itera-
tions for each run). By default, -lpilot = 1000 (i.e., -lpilot 1000).

-pool

This option enables the analysis of pooled-population genotyping data
(see § 3.1). By default, this option is not set.

-unascertained

This option cancels the computation of the conditional likelihood model.
Using this option (which is unset by default), the model does not
account for the exclusive presence of polymorphic markers in SNP
datasets.

-fixed_beta

This option is used to fix the shape parameters (α and β) of the (beta)
prior distribution of πj. By default, this option is not set.

-beta_a

If the -fixed_beta option is set, then this option is used to set the
shape parameter α of the (beta) prior distribution of πj. By default, α
= 0.7 (i.e., -beta_a 0.7).

-beta_b

If the -fixed_beta option is set, then this option is used to set the
shape parameter β of the (beta) prior distribution of πj. By default, β
= 0.7 (i.e., -beta_b 0.7).

-dlt_cnt

This parameter gives the initial value of ∆y, which is half the win-
dow width from which updates of allele counts y′ij are drawn uniformly
around the current value yij. The value of ∆y is eventually adjusted,
for each locus in each deme, during pilot runs to get acceptance rates
between 0.25 and 0.40. By default, ∆y = 5 (i.e., -dlt_cnt 5).

-dlt_frq

This parameter gives the initial value of ∆x, which is half the window
width from which updates of allele frequency p′ij are drawn uniformly

16

around the current value pij. The value of ∆x is eventually adjusted,
for each locus in each deme, during pilot runs to get acceptance rates
between 0.25 and 0.40. By default, ∆x = 0.25 (i.e., -dlt_frq 0.25).

-dlt_tau

This option gives the initial value of ∆τ , which is the standard deviation
on the log scale of the lognormal distribution (with median equal to the
current value Mi) from which updates of parameters ∆τ are drawn. The
value of ∆τ is eventually adjusted, for each deme, during pilot runs to
get acceptance rates between 0.25 and 0.40. By default, ∆τ = 0.025
(i.e., -dlt_tau 0.025).

-dlt_mu

If the -fixed_beta option is not set, then the parameters of the (beta)
prior distribution of πj are updated. To that end, we follow Kruschke
(2011) and parameterize the beta distribution using α = µν and β =
(1 − µ)ν. The -dlt_mu option gives the initial value of ∆µ, which is
half the window width from which updates of the mean allele frequency
µ′ are drawn uniformly around the current value µ. The value of ∆µ is
eventually adjusted during pilot runs to get acceptance rates between
0.25 and 0.40. By default, ∆µ = 0.025 (i.e., -dlt_mu 0.025).

-dlt_nu

If the -fixed_beta option is not set, then the parameters of the (beta)
prior distribution of πj are updated. To that end, we follow Kruschke
(2011) and parameterize the beta distribution using α = µν and β =
(1 − µ)ν. The -dlt_nu option gives the initial value of ∆ν , which is
the standard deviation on the log scale of the lognormal distribution
(with median equal to the current value ν) from which updates of the
parameter ν ′ are drawn. The value of ∆ν is eventually adjusted during
pilot runs to get acceptance rates between 0.25 and 0.40. By default,
∆ν = 0.5 (i.e., -dlt_nu 0.5).

-verbose

This option is used to print the traces of all parameters in different
output files. This may generate very large output files. By default, this
option is not set, and only the traces of the τi, the ξi and the (α,β)
parameters are printed out.

17

4.7 Format of the output files

KimTree produces several output files:

logfile.log

contains all the information that is printed on the console during exe-
cution

diag_mcmc.log

contains the log(likelihood) and the log(post. density) along the chain
(second and third columns) and the acceptance rates for each category
of parameters, i.e. (depending on the data and the options): the allele
counts nij, the allele frequencies xij, the branch lengths τi, possibly the
parameters µ and ν of the (beta) prior distribution of πj.

summary_beta_xxx.out

contains the mean and standard deviation (std) of the shape parameters
α and β of the (beta) prior distribution of πrj in the root node. If X-
linked data are provided, two files are produced: summary_beta_auto.out
for autosomal data (A) and summary_beta_chrx.out for X-linked data
(X). Otherwise, only the summary_beta.out file is written.

summary_counts_xxx.out

contains the mean and standard deviation (std) of the allele counts xij,
if the -pool option is set, for each locus in each deme. If X-linked data
are provided, two files are produced: summary_counts_auto.out for
autosomal data (A) and summary_counts_chrx.out for X-linked data
(X). Otherwise, only the summary_counts.out file is written.

summary_freq_xxx.out

contains the mean and standard deviation (std) of the allele frequencies
xij, for each locus in each deme. If X-linked data are provided, two
files are produced: summary_freq_auto.out for autosomal data (A)
and summary_freq_chrx.out for X-linked data (X). Otherwise, only
the summary_freq.out file is written.

summary_tau_xxx.out

contains the mean and standard deviation (std) of the τi parameter
(lenght) for each branch of the tree. If X-linked data are provided,

18

two files are produced: summary_tau_auto.out for autosomal data (A)
and summary_tau_chrx.out for X-linked data (X). Otherwise, only the
summary_tau.out file is written.

summary_xi.out

contains the mean and standard deviation (std) of the ξi parameter
(effective sex-ratio) the for each branch of the tree.

trace_beta_xxx.out

contains the values of the shape parameters α and β of the (beta)
prior distribution of πrj along the Markov chain. If X-linked data are
provided, two files are produced: trace_beta_auto.out for autosomal
data (A) and trace_beta_chrx.out for X-linked data (X). Otherwise,
only the trace_beta.out file is written. These files may be useful to
check for convergence using, e.g., the CODA package in R.

trace_counts_xxx.out

contains the value of the allele counts yij along the Markov chain. This
file is only printed out if the -verbose option is set. If X-linked data
are provided, two files are produced: trace_counts_auto.out for au-
tosomal data (A) and trace_counts_chrx.out for X-linked data (X).
Otherwise, only the trace_counts.out file is written.

trace_freq_xxx.out

contains the value of the allele frequencies xij along the Markov chain.
This file is only printed out if the -verbose option is set. If X-linked
data are provided, two files are produced: trace_freq_auto.out for
autosomal data (A) and trace_freq_chrx.out for X-linked data (X).
Otherwise, only the trace_freq.out file is written.

trace_tau_xxx.out

contains the value of τi along the Markov chain. If X-linked data are
provided, two files are produced: trace_tau_auto.out for autosomal
data (A) and trace_tau_chrx.out for X-linked data (X). Otherwise,
only the trace_tau.out file is written. These files may be useful to
check for convergence using, e.g., the CODA package in R.

trace_xi.out

19

contains the value of the ξi parameter (effective sex-ratio) along the
Markov chain. This file is only produced if X-linked data are provided.

DIC.out

contains the values of: the posterior mean deviance, D̄, which can
be interpreted as a Bayesian measure of fit); the Bayesian deviance
evaluated at the posterior mean of the parameters, D(Θ̄); the effective
dimension of the hierarchical model, pD = D̄−D(Θ̄); and the deviance
information criterion (DIC), which is equal to

(
2D̄ −D(Θ̄)

)
.

5 Credits

KimTree uses Makoto Matsumoto and Takuji Nishimura’s implementation
of the Mersenne Twister random number generator, http://www.math.sci.
hiroshima-u.ac.jp/~m-mat/MT/emt.html.

6 Copyright

KimTree is free software under the GNU General Public License (see http:
//www.gnu.org/licenses/gpl-3.0.en.html), and c© INRA. The Mersenne
Twister code is c© 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
and open source code under the BSD Licence.

7 Contact

If you have any question, please feel free to contact me. However, I strongly
recommend you read carefully this manual first.

20

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://www.gnu.org/licenses/gpl-3.0.en.html
http://www.gnu.org/licenses/gpl-3.0.en.html
http://www.inra.fr/en
mailto:renaud.vitalis@inra.fr

Bibliography

Brooks, S., and A. Gelman, 1998 General methods for monitoring conver-
gence of iterative simulations. Journal of Computational and Graphical
Statistics 7: 434–455.

Clemente, F., M. Gautier, and R. Vitalis, 2018 Inferring sex-specific demo-
graphic history from SNP data. PLoS Genetics .

Gautier, M., 2015 Genome-wide scan for adaptive divergence and association
with population-specific covariates. Genetics 201: 1555–1579.

Gautier, M., and R. Vitalis, 2013 Inferring population histories using genome-
wide allele frequency data. Molecular Biology and Evolution 30: 654–668.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin, 2004 Bayesian Data
Analysis . Chapman & Hall, New York, 2nd edition.

Gilks, W. R., S. Richardson, and D. J. Spiegelhalter, 1996 Markov Chain
Monte Carlo in Practice. Chapman & Hall, New York, 2nd edition.

Günther, T., and G. Coop, 2013 Robust identification of local adaptation
from allele frequencies. Genetics 195: 205–220.

Kelleher, J., A. M. Etheridge, and G. McVean, 2016 Efficient coalescent
simulation and genealogical analysis for large sample sizes. PLoS Comput
Biol 12: e1004842.

Kimura, M., 1964 Diffusion models in population genetics. Journal of Applied
Probability 1: 177–232.

Kruschke, J. K., 2011 Doing Bayesian data analysis: A tutorial with R and
BUGS . Academic Press, Oxford.

Plummer, M., N. Best, K. Cowles, and K. Vines, 2006 Coda: output analysis
and diagnostics for MCMC. R News 6: 7–11.

R Core Team, 2017 R: A Language and Environment for Statistical Comput-
ing . R Foundation for Statistical Computing, Vienna, Austria.

Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. Van Der Linde, 2002
Bayesian measures of model complexity and fit. Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 64: 583–639.

21

	Overview
	Before you start
	How to get KimTree?
	How to compile KimTree?

	Underlying principles of KimTree
	The data
	The population genetics model
	The framework for statistical inference

	Using KimTree
	Input files format
	Input tree
	Allele count data (by default)
	Read count data (using the -pool option)

	Running KimTree
	Sanity checks
	Assessing convergence
	Checking mixing properties

	Interpreting the results
	Worked example
	Details of KimTree options
	Format of the output files

	Credits
	Copyright
	Contact
	Bibliography

