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1. Preface1

1.1 General context and history of DIYABC2

In less than 10 years, Approximate Bayesian Computations (ABC) have developed in the Population Ge-3

netics community as a new tool for inference on the past history of populations and species. Compared to4

other approaches based on the computation of the likelihood which are still restrained to a very narrow5

range of evolutionary scenarios and mutation models, the ABC approach has demonstrated its ability to6

stick to biological situations that are much more complex and hence realistic. However, this approach7

still requires numerous computations to be performed so that it has been used mostly by specialists8

(i.e. statisticians and programmers). This has almost certainly restrained the possible impact of ABC9

in population genetic studies. We believe that this situation must be improved and therefore we have10

developed a computer program for the large community of experimental biologists. We therefore designed11

DIYABC as a user-friendly program allowing non specialist biologists to achieve their own analysis. The12

first version (DIYABC v0.x) had been written especially for microsatellite data. There were at least13

two reasons for that. The first one is that we have been among the first to develop and use this class14

of markers in population genetic studies (e.g. Estoup et al., 1993). Since then, we have developed mi-15

crosatellites in numerous species as well as we have published theoretical studies and reviews on these16

markers (e.g. Estoup et al., 2002). The second reason is that microsatellites have been and still are very17

popular markers in the population geneticist community and there is now a large quantity of data that18

might benefit of an ABC approach. The second version of our software (DIYABC v1.x) has been19

designed to make use of DNA sequence data. This has several immediate consequences. For instance,20

the standard Genepop data file format has been extended to incorporate sequence data. This has been21

done in collaboration with the authors of Genepop and explained in subsection 4.1.1. In this version,22

sequence loci are considered in the same way as microsatellite loci, i.e. they are considered as genetically23

independent and intra-locus recombination is not (yet) available. Regarding mutation models for DNA24

sequences, we used the same philosophy as for microsatellites, i.e. the program considers only simple and25

widely used models, keeping in mind that a higher-dimensional parameter space will be less well explored26

than a lower-dimensional space. Note that none of these mutation models includes insertion-deletions.27

Also five categories of loci (either microsatellites or DNA sequences) were considered in this second ver-28

sion : autosomal diploid, autosomal haploid, X-linked, Y-linked and mitochondrial. Note that X-linked29

loci can be used for an haplo-diploid species in which both sexes have been sampled. If non-autosomal30

loci have been typed in population samples, the sex-ratio of the species will have to be provided (see31

subsection 4.1.1).32

33

Other improvements over version 0 included :34

1. the use of multithread technology in order to exploit multicore/multiprocessor computers. This35

is especially useful when building the reference table and for several other intensive computation36

steps, such as the multinomial logistic regression,37

2. a new option which helps the detection of ”bad” prior modelisation of the data,38

3. another new option which helps evaluate the goodness of fit of a given model-parameter posterior39

combination (i.e. Model checking),40

4. many new screens implemented not only to treat sequence data, but also to cope with the new41

options described above, as well as to offer useful complementary information on the current run.42

The third version of DIYABC (DIYABC v2.x) has been entirely recoded in order to be used under43

the usual three OS (Linux, Windows and Mac). Also the code for computations has been separated44

from that of the graphic user interface (GUI). The former has been rewritten in C++ and the latter is45

a mixture of Python and Qt (PyQt). The user can then launch computations with or without using the46

GUI. The GUI ’s uses are :47

1. the management of projects48

2. the input of the historical and genetical models49

3. the parameterization of analyses50

4. the launch of computations of the reference table and of the various required analyses51



DIYABC v2.1 5

5. the visualization of results1

Also, as DNA sequences have been added in the second version, a new category of markers has been2

added to the third version : Single Nucleotide Polymorphisms (SNPs). Instead of extending once more3

the Genepop format, a new data simple format has been designed for these markers. Note that SNP4

data are treated separately from other markers (i.e. they cannot be analyzed together with microsatellite5

and/or DNA sequence data). It is worth noting that, in the present version of the program, the analysed6

SNP data are assumed to correspond to independent selectively-neutral loci, without any ascertainment7

bias (i.e. the deviations from expected theoretical results due to the SNP discovery process in which a8

small number of individuals from selected populations are used as discovery panel).9

10

This version includes all improvements of version 1.x and a few new improvements such as :11

• loci of the same type (i.e. microsatellites on one hand or DNA sequences on the other hand) can12

be associated in one or more groups. This allows for instance to define different mutation models13

for microsatellites with motifs of different lengths.14

• the model checking option is now presented as a direct option (not a suboption of the ABC esti-15

mation of parameters) which largely simplifies its use.16

• the logistic regression can be performed on linear discriminant analysis components instead of all17

summary statistics. This reduces the number of dependent variables, thus allowing to run large18

”confidence in scenario choice” analyses including many summary statistics and scenarios (Estoup19

et al., 2012).20

The latest version of the program ( DIYABC v2.1.0) includes the following major improve-21

ments: (i) new analysis options to compute error / accuracy indicators conditionally to the observed22

dataset, (ii) possibility to specify a MAF (minimum allele frequency) criterion on the analyzed SNP23

datasets, and (iii) optimization of the simulation process of SNP datasets that include a substantial24

amount of missing data.25

1. New analysis options to compute error / accuracy indicators conditionally to the observed dataset.26

The program DIYABC allows evaluating the confidence in scenario choice and the accuracy of parame-27

ter estimation under a given scenario using simulated pseudo-observed datasets (pods), for which the true28

scenario ID and parameter values are known. So far such pods were drawn randomly into prior distribu-29

tions for both the scenario ID and the parameter values. By doing so, we estimate global error/accuracy30

levels computed over the whole (and usually huge) data space defined by the prior distributions. These31

indicators hence actually correspond to “prior” error rates (when evaluating the confidence in scenario32

choice) or “prior” precision measures (when evaluating the accuracy of parameter estimation under a33

given scenario). The levels of error/accuracy may be substantially different depending on the location of34

an observed or pseudo-observed dataset in the prior data space. Indeed, some peculiar combination of35

parameter values may correspond to situations of strong (weak) discrimination among the compared sce-36

narios or of accurate (inaccurate) estimation of parameter values under a given model. Aside from their37

use to select the best classifier and set of summary statistics, prior-based indicators are, however, poorly38

relevant since, for a given dataset, the only point of importance in the data space is the observed dataset39

itself. Computing error / accuracy indicators conditionally to the observed dataset (i.e. focusing around40

the observed dataset by using the posterior distributions) is hence clearly more relevant than blindly com-41

puting indicators over the whole prior data space as done so far. This is basically what DIYABC v2.1.042

proposes to do with several new analysis sub-options available within the options “Evaluate confidence in43

the scenario choice” and “Compute bias and precision on parameter estimations”. Indeed, one can now44

choose to compute a “posterior” error rate (when evaluating the confidence in scenario choice) by drawing45

the scenario ID and parameter values of a large number of pods from the s simulated datasets closest46

to the observed dataset (i.e. the s datasets with the smallest Euclidean distance). Typically, s = 50047

(when simulating 10,000 to 1 million datasets per compared scenario) but this number can be lowered to48

100. In the same vein, one can now choose to compute “posterior” accuracy indicators (when evaluating49

the accuracy of parameter estimation under a given scenario) by drawing the parameter values of a large50

number of pods among the parameter posterior distributions estimated under a given scenario using a51

standard ABC procedure. Note that we found, using controlled genetics experiments, that posterior error52

(accuracy) measures could strongly differ from prior error (accuracy) measures, hence making a case of53

the significance of computing error (accuracy) measures conditionally to the observed dataset rather than54

blindly computing such measures over the whole prior data space (unpublished results and see Pudlo et55

al. 2015).56
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2. Possibility to specify a MAF (minimum allele frequency) criterion on the analyzed SNP datasets.1

Compared to other types of molecular markers, SNP loci have low mutation rates, so that polymor-2

phism at such loci results from a single mutation during the whole population(s) gene tree and genotypes3

are bi-allelic. To generate a simulated polymorphic dataset at a given SNP locus, we proceeded following4

the algorithm proposed by Hudson (2002) (cf –s 1 option in the program ms associated to Hudson, 2002).5

Briefly, the genealogy at a given locus of all genes sampled in all populations of the studied dataset is6

simulated until the most recent common ancestor according to coalescence theory. Then a single muta-7

tion event is put at random on one branch of the genealogy (the branch being chosen with a probability8

proportional to its length relatively to the total gene tree length). This algorithm provides the simulation9

efficiency and speed necessary in the context of ABC, where large numbers of simulated datasets including10

numerous SNP loci have to be generated (Cornuet et al. 2014). Most importantly, using the Hudson’s11

simulation algorithm is equivalent to applying a default MAF (minimum allele frequency) criterion on12

the simulated dataset. As a matter of fact, each locus in both the observed and simulated datasets will be13

characterized by the presence of at least a single copy of a variant over all genes sampled from all studied14

populations (i.e. pooling all genes genotyped at the locus). In DIYABC v2.1.0, it is possible to impose a15

different MAF criterion for each locus on the observed and simulated datasets. This MAF is computed16

pooling all genes genotyped over all studied population samples. For instance, the specification of a MAF17

equal to 5% will automatically select a subset of m loci characterized by a minimum allele frequency >18

5% among the l locus of the observed dataset. In agreement with this, only m locus with a MAF>5%19

will be retained in a simulated dataset (simulated loci with a MAF≤5% will be discarded). In practice,20

the instruction for a given MAF has to be indicated directly in the headline of the observed dataset. For21

instance, if one wants to consider only loci with a MAF equal to 5% one will write <MAF=0.05> in the22

headline. Writing <MAF=hudson> (or omitting to write any instruction with respect to the MAF) will23

bring the program to use the standard Hudson’s algorithm without further selection as done so far in24

the previous version of DIYABC. The selection with DIYABC v2.1.0 of a subset of loci fitting a given25

MAF allows: (i) to remove the loci with very low level of polymorphism from the dataset and hence26

increase the mean level of genetic variation of both the observed and simulated datasets, without pro-27

ducing any bias in the analyses; and (ii) to reduce the proportion of loci for which the observed variation28

may corresponds to sequencing errors. In practice MAF values ≤10% are considered. To check for the29

consistency/robustness of the ABC results obtained, it may be useful to treat a SNP dataset considering30

different MAFs (for instance MAF=hudson, MAF=0.01 and MAF=0.05).31

3. Optimization of the simulation process of SNP datasets that include a substantial amount of missing32

data.33

We have radically changed our way to take into account missing data for SNP datasets (i.e. missing34

genotypes denoted “9” in the data file). The initial way to deal with missing data turned out to be poorly35

efficient in term of computation time, especially when the number of SNP missing data was large which36

seems to be the case for many real SNP datasets. The new code we have implemented to deal with this37

issue is particularly efficient and makes it feasible to simulate in a reasonable time large SNP datasets38

including (or not) numerous missing data.39

Finally, as for DIYABC v1, the most recent versions of DIYABC v2 (v2.0 and v2.1) deals with sexually40

reproducing diploid or haploid species (co-dominant markers corresponding to autosomal, X-linked, Y-41

linked loci) but does not allow considering species reproducing clonally.42

For all versions of DIYABC, we recommend non-expert users to use the GUI for their computations.43

1.2 References to cite44

• version 0 : Cornuet J.M., F. Santos, M.A. Beaumont, C.P. Robert, J.M. Marin, D.J. Balding,45

T. Guillemaud and A. Estoup. 2008. Inferring population history with DIYABC: a user-friendly46

approach to Approximate Bayesian Computations. Bioinformatics, 24 (23), 2713-2719.47

• version 1 : Cornuet J.M., V. Ravign̈ı¿œ and A. Estoup, 2010. Inference on population history48

and model checking using DNA sequence and microsatellite data with the sofware DIYABC (v1.0)49

(2010) BMC Bioinformatics, 11, 401.50

• version 2 : Cornuet, J-M., Pudlo, P., Veyssier, J., Dehne-Garcia A., Gautier M., Leblois R., Marin51

J-M, and A. Estoup, 2014. DIYABC v2.0: a software to make approximate Bayesian computation52

inferences about population history using single nucleotide polymorphism, DNA sequence and mi-53

crosatellite data. Bioinformatics. Vol. 30, no. 8, p1187–1189, doi: 10.1093/bioinformatics/btt763.54



DIYABC v2.1 7

1.3 Web site1

http://www1.montpellier.inra.fr/CBGP/DIYABC2

You can get there executable files for different operating systems as well as the last version of this detailed3

notice document.4

1.4 System requirements5

• DIYABC should run on any linux flavour, Microsoft Windows XP and Seven and OS x 10.5 (intel)6

or later.7

• Minimum 4GB of RAM; 6GB of RAM recommended8

• 70MB free disk space for DIYABC binaries9

• From 1 to 10GB free disk space for each project depending on the project configuration and the10

records number in the reftable file.11

Caveat : it is possible that on windows 32bits (and sometimes on windows 64bits) the reference table file12

will not grow more than 4Go. We hope to be able to circumvent this constraint soon on windows 64bits.13

1.5 How to create (and send) a bug report14

DIYABC V2 provides an easy way to send to the program developers the different files and clues that15

are necessary to attempt solving a bug. Click on the âHelpâ menu. Then go on the âCreate bug reportâ16

tab. You then just need to following the few instructions we give you at this stage, validate and save17

the created bug report tarred file somewhere on your computer. Please send the bug report file to the18

indicated email address (DIYABC@supagro.inra.fr). Two remarks here: (i) the bug you describe has to19

be the last things that you did with the program; and (ii) please try to reproduce your bug one time and20

then create and send the bug report. Finally, it had to be noted that if the bug completely crash the21

application then no bug report can be created. We will do our best to solve your bug thanks to the bug22

report you provided us.23
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2. Methodology1

2.1 Basic notions on ABC2

Approximate Bayesian Computation or ABC is a bayesian approach in which the posterior distributions3

of the model parameters are determined by replacing the computation of the likelihood (probability of4

observed data given the values of the model parameters) by a measure of similarity between observed5

and simulated data. The posterior distributions are estimated from parameter values providing simulated6

data that are the most similar to observed data. Historically, different ways of estimating this similarity7

have been proposed, but all have been based on statistics summarizing information conveyed by the data8

set. In population genetics, data most often relate to individuals that have been genotyped at a given set9

of loci, these individuals being representative of the studied populations. The summary statistics are for10

instance the mean number of alleles per population or genetic distances between pairs of populations. It is11

much easier to measure the similarity between small sets of summary statistics than between large sets of12

multilocus genotype data. When the number of summary statistics is low, it is possible to select simulated13

data for which all the summary statistics are close to those of the observed data (Pritchard et al., 1999;14

Estoup et al., 2001; Estoup and Clegg, 2003). However, for more complex scenarios necessitating a larger15

number of summary statistics, it becomes almost impossible to find such simulated data sets. Beaumont16

et al. (2002) have hence proposed to measure similarity through the Euclidian distance between observed17

and simulated summary statistics, after normalization by standard deviations of simulated statistics. In18

addition, these authors introduced a step of weighted local linear regression aimed at favoring simulated19

data sets that are closer to the observed one.20

In practice, the ABC approach can be summarized in three successive steps (Excoffier et al., 2005) :21

i) generating simulated data sets, ii) selecting simulated data sets closest to observed data set and iii)22

estimating posterior distributions of parameters through a local linear regression procedure.23

In addition, this approach provides a way of comparing different models (hereafter named scenarios) that24

can explain observed data. Two measures of posterior probabilities of scenarios are proposed. The first25

measure is simply the relative proportion of each scenario in the simulated data sets closest to observed26

data sets (Miller et al., 2005; Pascual et al., 2007). The second measure is obtained by a logistic regres-27

sion of each scenario probability on the deviations between simulated and observed summary statistics28

(Fagundes et al., 2007; Beaumont, 2008).29

30

In order to simulate data, one has first to define one (or possibly several) scenario(s). Each scenario31

includes a historical model describing how the sampled populations are connected to their common an-32

cestor and a mutational model describing how allelic states of the studied genes are changing along their33

genealogical trees.34

35

2.2 Historical model parameterization36

The evolutionary scenario, which is characterized by the historical model, can be described as a succession37

in time of ”events” and ”inter event periods”. The events considered in the program are a restricted set38

of possible events affecting populations evolution. In the current version of the program, we consider only39

4 categories of events : population divergence, discrete change of effective population size, admixture and40

sampling (the last one has been added to allow considering samples taken at different times). Between two41

successive events affecting a population, we assume that populations evolve independently (e.g. without42

migration) and with a fixed effective size. The usual parameters of the historical model are the times43

of occurrence of the various events (counted in generations), the effective sizes of populations and the44

admixture rates. When writing the scenario, events have to be coded sequentially backward in time45

(see section 2.5 Prior Distribution when time priors are overlapping). Although this choice may not46

be natural at first sight, it is coherent with coalescence theory on which are based all data simulations47

in the program. For that reason, the keywords for a divergence or an admixture event are merge and48

split, respectively. Two other keywords, varNe and sample, correspond to a discrete change in effective49

population size and a gene sampling, respectively.50

A scenario takes the form of a succession of lines (one line per event), each line starting with the time of51

the event, then the nature of the event, and ending with several other data depending on the nature of52

the event. Following is the syntax used for each category of event :53

population sample : 〈time〉 sample 〈pop〉 〈time〉 is the time (always counted in number of generations)54

at which the sample was taken and55
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〈pop〉 is the population number from which is taken the sample. It is worth stressing here that1

samples are considered in the same order as they appear in the data file.2

3

population size variation : 〈time〉 varNe 〈pop〉 〈Ne〉4

From time 〈time〉, looking backward in time, population 〈pop〉 will have an effective size 〈Ne〉.5

population divergence : 〈time〉 merge 〈pop0〉 〈pop1〉6

At time 〈time〉, looking backward in time, population 〈pop1〉 ”merges” with population 〈pop0〉.7

Hereafter, only 〈pop0〉 ”survives”.8

population admixture : 〈time〉 split 〈pop0〉 〈pop1〉 〈pop2〉 〈rate〉9

At time 〈time〉, looking backward in time, population 〈pop0〉 ”splits” between populations 〈pop1〉10

and 〈pop2〉. A gene lineage from population 〈pop0〉 joins population 〈pop1〉 (respectively 〈pop2〉)11

with probability 〈rate〉 (respectively 1-〈rate〉).12

A historical model is a succession of lines as described above. However, in order to cope with special13

situations (see explanations in Note 9 below), we added a first line giving the effective sizes of sampled14

populations before the first event described, looking backward in time. Expressions between arrows, other15

than population numbers, can be either a numeric value (e.g. 25) or a character string (e.g. t0). In the16

latter case, it is considered as a parameter of the model. So the only possible parameters of the historical17

model are times of events, effective population sizes and admixture rates.18

The program offers the possibility to add or remove scenarios, by just clicking on the corresponding19

buttons. The usual shortcuts (CTRL+C, CTRL+V and CTRL+X) can be used to edit the different20

scenarios. Some or all parameters can be in common among scenarios.21

22

Notes23

1. There are two ways of giving a fixed value to effective population sizes, times and admixture rates.24

Either the fixed value appears as a numeric value in the scenario windows or it is given as a string25

value like any parameter. In the latter case, one gives this parameter a fixed value by choosing a26

Unifom distribution and setting the minimum and maximum to that value in the prior setting (see27

section 2.4).28

2. All expressions must be separated by at least one space.29

3. All expressions relative to parameters can include sums or differences. For instance, it is possible30

to write :31

t0 merge 2 332

t0+t1 merge 1 233

This means that t1 is the time elapsed between the two events. By imposing t1>0 (as explained34

in section prior and posterior distributions), this implies that the divergence of populations 135

and 2 is always more ancient than the divergence of populations 2 and 3. However, one cannot36

mix a parameter and a numeric value (e.g. t1+150 will result in an error). This can be done by37

writing t1+t2 and fixing t2 by choosing a uniform distribution with lower and upper bounds both38

equal to 150.39

4. Time is always given in generations. Since we look backward, time increases towards past.40

5. Negative times are allowed (e.g. the example given in section 3), but not recommended.41

6. Population numbers must be consecutive natural integers starting at 1. The number of population42

can exceed the number of samples and vice versa : in other words, unsampled populations can be43

considered in the scenario on one hand, and the same population can be sampled more than once44

on the other hand.45

7. Multi-furcating population trees can be considered, by writing several divergence events occurring46

at the same time. However, one has to be careful to the order of the merge events. For instance,47

the following piece of scenario will fail :48

100 merge 1 249

100 merge 2 350

This is because, after the first line, population 2, which has merged with population 1, does not51
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”exist” anymore (the surviving population is population 1). So, it cannot receive lineages of popu-1

lation 3 as it should as a result of the second line. The correct ways are either to put line 2 before2

line 1, or to change line 2 to :3

100 merge 1 3.4

8. Since times of events can be parameters, the order of events can change according to the values5

taken by the time parameters. In any case, before simulating a data set, the program sorts out6

events by increasing times 1. If two or more events occur at the same time, the order is that of the7

scenario as it is written by the the user.8

9. Most scenarios begin with sampling events. We then need to know the effective size of the popu-9

lations to perform the simulation of coalescences until the next event concerning each population.10

One way would have been to provide the population size on the same line of the scenario description.11

However, in some scenarios with varying population sizes, it can not be determined what is the12

effective size at the sampling time before the set of time parameter values is generated. For that13

reason, we decided to provide the effective size and the sampling description on two distinct lines.14

Examples Below are some usual scenarios with increasing complexity. Each scenario is coded on the15

left side and a graphic representation given by DIYABC is printed on the right side16

1. One population from which several samples have been taken at various generations : 0, 3 and 10.17

The only unknown parameter of the scenario2 is the effective population size.18

19

20

2. Two populations of size N1 and N2 have diverged t generations in the past from an ancestral pop-21

ulation of size N1+N2.22

23

24

1Sorting events by increasing times can only be done when all time values are known, i.e. when simulating datasets.
When checking scenarios, all time values are not yet defined, so that when visualizing a scenario, events are represented in
the same order as they appear in the window used to define the scenario.

2Of course, there are also one or more parameter(s) for the mutation model.
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3. Two parental populations (1 and 2) with constant effective populations sizes N1 and N2 have di-1

verged at time td from an ancestral population of size NA. At time ta, there has been an admixture2

event between the two populations giving birth to an admixed population (3) with effective size N33

and with an admixture rate ra relative to population 1.4

5

6

4. The next scenario is slightly more complicated. It includes four population samples and two ad-7

mixture events. For simplicity sake, all populations are assumed to have identical effective sizes (Ne).8

9

10

Note that although there are only four samples, the scenario includes a fifth unsampled population.11

This unsampled population which diverged from population 1 at time t3 was a parent in the ad-12

mixture event occurring at time t2. Note also that the first line must include the effective sizes of13

the five populations.14

15

5. The following three scenarii correspond to a classic invasion history from an ancestral population16

(population 1). In scenario 1, population 3 is derived from population 2, itself derived from pop-17

ulation 1. In scenario 2, population 2 derived from population 3, itself derived from population 1.18

In scenario 3, both populations 2 and 3 derived independently from population 1. The same trio of19

scenarii will be taken later in a fully described example. Note that when a new population is created20

from its ancestral population, there is an initial size reduction (noted here N2b for population 2 and21

N3b for population 3) since the invasive population generally starts with a few immigrants.22

Scenario 123
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1

Scenario 22

3

Scenario 34

5
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2.3 Mutation model parameterization (microsatellite and DNA sequence loci)1

The program can analyse microsatellite data and DNA sequence data altogether as well as separately.2

In the current version, there are still two restrictions. First, all loci in an analysis must be genetically3

independent. Second, for DNA sequence loci, intralocus recombination is not considered.4

5

Loci are grouped by the user according to its needs (this an improvement of the current version which6

imposed all loci of a given category to follow the same mutation model). A different mutation model can7

be defined for each group. For instance, one group can include all microsatellites with motifs that are 28

bp long and another group those with a 4 bp long motif. Also, with DNA sequence loci, nuclear loci can9

be grouped together and a mitochondrial locus form a separate group.10

11

The parameterization of the two categories of markers is now described below.12

2.3.1 Microsatellite loci13

Although a variety of mutation models have been proposed for microsatellite loci (Whittaker et al.,14

2003), it is usually sufficient to consider only the simplest models (Cornuet et al., 2006). This has the15

non-negligible advantage of reducing the number of parameters, which can be a real issue when complex16

scenarios are considered. This is why we chose the Generalized Stepwise Mutation model (Estoup et al.,17

2002). Under this model, a mutation increases or decreases the length of the microsatellite by a number18

of repeated motifs following a geometric distribution. This model necessitates only two parameters :19

the mutation rate (µ) and the parameter of the geometric distribution (P ). The same mutation model20

is imposed to all loci of a given group. However, each locus has its own parameters (µi and Pi) and,21

following a hierarchical scheme, each locus parameter is drawn from a gamma distribution with mean22

equal to the mean parameter value. Note also that :23

1. individual loci parameters (µi and Pi) are considered as nuisance parameters and hence are never24

recorded. Only mean parameters are recorded.25

2. The variance or shape parameter of the gamma distributions are set by the user and are NOT26

considered as parameters.27

3. The SMM or Stepwise Mutation Model is a special case of the GSM in which the number of repeats28

involved in a mutation is always one. Such a model can be easily achieved by setting the maximum29

value of mean P (P̄ ) to 0. In this case, all loci have their Pi set equal to 0 whatever the shape of30

the gamma distribution.31

4. All loci can be given the same value of a parameter by setting the shape of the corresponding32

gamma distribution to 0 (this is NOT a limiting case of the gamma, but only a way of telling the33

program).34

Eventually, to give more flexibility to the mutation model, the program offers the possibility to consider35

mutations that insert or delete a single nucleotide to the microsatellite sequence. In the previous version,36

this option was considered as marginal, and was not treated in the same way as the motif size stepwise37

mutational process, i.e. there was no associated parameter that could be adjusted to the data. This has38

been changed in this version : it is now possible to use a mean parameter (named µ(SNI)) with a prior39

to be defined and individual loci having either values identical to the mean parameter or drawn from a40

Gamma distribution.41

2.3.2 DNA sequence loci42

Note first that this version of the program does not consider insertion-deletion mutations, mainly because43

there does not seem to be much consensus on this topic. Concerning substitutions, only the simplest44

models are considered. We chose the Jukes-Cantor (1969) one parameter model, the Kimura (1980) two45

parameter model, the Hasegawa-Kishino-Yano (1985) and the Tamura-Nei (1993) models. The last two46

models include the ratios of each nucleotide as parameters. However, in order to reduce the number47

of parameters, these ratios have been fixed to the values calculated from the observed data set for each48

DNA sequence locus. Consequently, this leaves two and three parameters for the Hasegawa-Kishino-Yano49

(HKY) and Tamura-Nei (TN), respectively. Also, two adjustments are possible : one can fix the fraction50

of constant sites (those that cannot mutate) on the one hand and the shape of the Gamma distribution51
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of mutations among sites on the other hand.1

As for microsatellites, all sequence loci of the same group are given the same mutation model with2

mean parameter(s) drawn from priors and each locus has its own parameter(s) drawn from a Gamma3

distribution (same hierarchical scheme). Notes 1, 2 and 4 of previous subsection (2.3.1) apply also for4

sequence loci.5

2.4 SNPs do not require mutation model parameterization6

SNPs have two characteristics that allow to get rid of mutation models : they are polymorphic and they7

present only two allelic (ancestral and derived) states. In order to be sure that all analyzed SNP loci have8

the two characteristics, non polymorphic loci are disgarded right from the beginning of analyses. Note9

that a warning message will appear if the observed dataset include monomorphic loci, the latter being10

automatically removed from further analyses by the program. Consequently, no matter how it occurred,11

we can assume that there occured one and only one mutation in the coalescence tree of sampled genes.12

We will see below that this largely simplifies (and speeds up) SNP data simulation as one can use in this13

case the efficient algorithm of Hudson (2002) (Cornuet et al. 2014). Also, this advantageously reduces14

the dimension of the parameter space (as mutation parameters are not needed in this case). There is15

however a potential drawback which is the absence of any calibration generally brought by priors on16

mutation parameters. Consequently, (time/effective size) ratios rather than original time parameters will17

be informative.18

It is worth stressing that, using the Hudson’s simulation algorithm for SNP markers is equivalent to19

appling a default MAF (minimum allele frequency) criterion on the simulated dataset. As a matter of20

fact, each locus in both the observed and simulated datasets will be characterized by the presence of at21

least a single copy of a variant over all genes sampled from all studied populations (i.e. pooling all genes22

genotyped at the locus). In DIYABC v2.1.0, it is possible to impose a different MAF criterion for each23

locus on the observed and simulated datasets. This MAF is computed pooling all genes genotyped over24

all studied population samples. For instance, the specification of a MAF equal to 5% will automatically25

select a subset of m loci characterized by a minimum allele frequency > 5% among the l locus of the26

observed dataset. In agreement with this, only m locus with a MAF>5% will be retained in a simulated27

dataset (simulated loci with a MAF≤5% will be discarded). In practice, the instruction for a given28

MAF has to be indicated directly in the headline of the observed dataset. For instance, if one wants29

to consider only loci with a MAF equal to 5% one will write <MAF=0.05> in the headline. Writing30

<MAF=hudson> (or omitting to write any instruction with respect to the MAF) will bring the program31

to use the standard Hudson’s algorithm without further selection as done so far in the previous version32

of DIYABC. The selection with DIYABC v2.1.0 of a subset of loci fitting a given MAF allows: (i) to33

remove the loci with very low level of polymorphism from the dataset and hence increase the mean level34

of genetic variation of both the observed and simulated datasets, without producing any bias in the35

analyses; and (ii) to reduce the proportion of loci for which the observed variation may corresponds to36

sequencing errors. In practice MAF values ≤10% are considered. To check for the consistency/robustness37

of the ABC results obtained, it may be useful to treat a SNP dataset considering different MAFs (for38

instance MAF=hudson, MAF=1% and MAF=5%).39

2.5 Prior distributions40

The Bayesian aspect of the ABC approach implies that parameter estimations use prior knowledge about41

these parameters, prior knowledge given by prior distributions of parameters. The program offers a choice42

among usual probability distributions, i.e. Uniform, Log-Uniform, Normal or Log-Normal for historical43

parameters and Uniform, Log-Uniform or Gamma for mutation parameters. Extremum values and other44

parameters (e. g. mean and standard deviation) must be filled in by the user.45

In addition, one can impose some simple conditions on historical parameters. For instance, there can46

be two times parameters with overlapping prior distributions. However, we want that the first one, say47

t1, to always be larger than the second one, say t2. For that, we just need to set t1 > t2 in the48

corresponding edit-windows. Such a condition needs to be between two parameters (not a parameter and49

a number, though this can be set up by giving a minimum and a maximum to the prior distribution) and50

more precisely between two parameters of the same category (i.e. two effective sizes, two times or two51

admixture rates). The limit to the number of conditions is imposed by the logics, not by the program.52

The only binary relationships accepted here are >,<,>= and <=.53
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2.6 Algorithms for data simulation : main features1

Data simulation is based on the Wright-Fisher model. It consists in generating the genealogy of all2

sampled genes until their most recent common ancestor using coalescence theory.3

This begins by randomly drawing a complete set of parameters from their own prior distributions and4

that satisfy all imposed conditions. Then, once events have been ordered by increasing times, a sequence5

of actions is constructed. If there are more than one locus, the same sequence of actions is used for all6

successive loci. Possible actions fall into four categories :7

adding a sample to a population :8

Add as many gene lineages to the population as there are genes in the sample.9

merge two populations :10

Move the lineages of the second population into the first population.11

split between two populations :12

Distribute the lineages of the admixed population among the two parental populations according13

to the admixture rate.14

coalesce and mutate lineages within a population :15

There are two possibilities here, depending on whether the population is terminal or not. We call16

terminal the population including the most recent common ancestor of the whole genealogy. In17

a terminal population, coalescences and mutations stop when the MRCA is reached whereas in a18

non terminal population, coalescence and mutations stop when the upper (most ancient) limit is19

reached. In the latter case, coalescences can stop before the upper limit is reached because there20

remains a single lineage, but this single remaining lineage can still mutate.21

Two different algorithms are implemented : a generation by generation simulation or a continuous22

time simulation. The choice, automatically performed by the program, is based on an empirical23

criterion which ensures that the (approximate3) continuous time algorithm is chosen whenever it is24

faster than the (exact3) generation by generation while keeping the relative error on the coalescence25

rate below 5% (see Cornuet et al. (2008) for a description of this criterion).26

In any case, a coalescent tree is generated over all sampled genes.27

Then the simulation process diverges depending on the type of markers : for microsatellite or DNA28

sequence loci, mutations are distributed over the branches according to a Poisson process whereas29

for SNP loci, one mutation is applied to a single branch of the coalescent tree, this branch being30

drawn at random with probability proportional to its length.31

Eventually, starting from an ancestral allelic state (established as explained below), all allelic states32

of the genealogy are deduced forward in time according to the mutation process. For microsatellite33

loci, the ancestral allelic state is taken at random in the stationary distribution of the mutation34

model (not considering potential single nucleotide indel mutations). For DNA sequence loci, the35

procedure is slightly more complicated. First, the total number of mutations over the entire tree36

is evaluated. Then according to the proportion of constant sites and the gamma distribution of37

individual site mutation rates, the number and position of mutated sites are generated. Finally,38

these mutated sites are given ’A’, ’T’, ’G’ or ’C’ states according to the selected mutation model.39

For SNP loci, the ancestral allelic state is arbitrarily set to 0 and it becomes equal to 1 after le the40

mutation.41

Each category of loci has its own coalescence rate deduced from male and female effective population42

sizes . In order to combine different categories (e.g. autosomal and mitochondrial), we have to take43

into account the relationships among the corresponding effective population sizes. This can be44

achieved by linking the different effective population sizes to the effective number of males ( NM )45

and females (NF ) through the sum NT = NF + NM and the ratio r = NM/(NF + NM ). We use46

the following formulae for the probability of coalescence of two lineages within this population :47

autosomal diploid loci : p = 1
8r(1−r)NT

48

autosomal haploid loci : p = 1
4r(1−r)NT

49

X-linked loci / haplo-diploid loci : p = 1+r
9r(1−r)NT

50

Y-linked loci : p = 1
rNT

51

3The terms approximate and exact are relative to the basic assumptions of the Wright-Fisher model, not to the biological
reality of the process.
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Mitochondrial loci : p = 1
(1−r)NT

1

Users have to provide a (total) effective size NT (on which inferences will be made) and a sex-ratio2

r. If no sex ratio is provided, the default value of r is taken as 0.5.3

2.7 Summary statistics4

For each category (microsatellite, DNA sequences or SNP) of loci, the program proposes a series of5

summary statistics among those used by population geneticists. These summary statistics are mean6

values or variances over loci of the same group and characterize a single, a pair or a trio of population7

samples. These are :8

2.7.1 for microsatellite loci9

Single sample statistics :10

1. mean number of alleles across loci11

2. mean gene diversity across loci (Nei, 1987)12

3. mean allele size variance across loci13

4. mean M index across loci (Garza and Williamson, 2001; Excoffier et al., 2005)14

Two sample statistics :15

1. mean number of alleles across loci (two samples)16

2. mean gene diversity across loci (two samples)17

3. mean allele size variance across loci (two samples)18

4. FST between two samples (Weir and Cockerham, 1984)19

5. mean index of classification (two samples) (Rannala and Moutain, 1997; Pascual et al., 2007)20

6. shared allele distance between two samples (Chakraborty and Jin, 1993)21

7. (δµ)2 distance between two samples (Golstein et al., 1995)22

Three sample statistics :23

1. Maximum likelihood coefficient of admixture (Choisy et al., 2004)24

2.7.2 for DNA sequence loci25

Single sample statistics :26

1. number of distinct haplotypes27

2. number of segregating sites28

3. mean pairwise difference29

4. variance of the number of pairwise differences30

5. Tajima’s D statistics (Tajima, 1989)31

6. Number of private segregating sites (=number of segregating sites if there is only one sample)32

7. Mean of the numbers of the rarest nucleotide at segregating sites433

8. Variance of the numbers of the rarest nucleotide at segregating sites34

Two sample statistics :35

1. number of distinct haplotypes in the pooled sample36

2. number of segregating sites in the pooled sample37

4This statistics can provide information in case of recent demographic variation : a recent expansion increases the number
of singletons (nucleotides occuring just once at a segregating site) resulting in a low value of this statistics, whereas a recent
decline will produce an opposite result.
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3. mean of within sample pairwise differences1

4. mean of between sample pairwise differences2

5. FST between two samples (Hudson et al., 1992)3

Three sample statistics :4

1. Maximum likelihood coefficient of admixture (adapted from Choisy et al., 2004)5

2.7.3 for SNP loci6

Single sample statistics :7

1. proportion of loci with null gene diverty (= proportion of monomorphic loci)8

2. mean gene diversity across polymorphic loci (Nei, 1987)9

3. variance of gene diversity across polymorphic loci10

4. mean gene diversity across all loci11

Two sample statistics :12

1. proportion of loci with null FST distance between the two samples (Weir and Cockerham,13

1984)14

2. mean across loci of non null FST distances between the two samples15

3. variance across loci of non null FST distances between the two samples16

4. mean across loci of FST distances between the two samples17

5. proportion of loci with null Nei’s distance between the two samples (Nei, 1972)18

6. mean across loci of non null Nei’s distances between the two samples19

7. variance across loci of non null Nei’s distances between the two samples20

8. mean across loci of Nei’s distances between the two samples21

Three sample statistics :22

1. proportion of loci with null admixture estimate23

2. mean across loci of non null admixture estimate24

3. variance across loci of non null admixture estimated25

4. mean across all locus admixture estimates26

2.8 Pre-evaluation of scenarios and prior distributions27

This option is proposed to users since version 1.0. The purpose is to check that at least one combination28

of scenarios and priors can produce simulated data sets that are close enough to the observed data set.29

This is performed through two kinds of analyses. In the first one, a principal component analysis is30

performed in the space of summary statistics on at most 100,000 simulated data set and the observed31

data is added on each plane of the analysis in order to evaluate how the latter is surrounded by simulated32

data sets. In addition to this global approach, there is a second one in which each summary statistic of33

the observed data set is ranked against those of the simulated data set. This second analysis helps finding34

which aspects of the model (including prior) have been mistated. For instance, a grossly overestimated35

genetic distance (in simulated data sets compared to the observed one) may suggest a mispecification of36

the prior distribution of the time of divergence of the two involved populations or of the mean mutation37

rate of the markers. Using this new option before running a full ABC treatment is a convenient way to38

reveal mispecification of models (scenarios) and/or prior distributions of parameters (see Cornuet et al.,39

2010, for an illustration)40
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2.9 Estimation of posterior distributions of parameters1

Several steps are necessary to get posterior distributions of parameters. First, the normalized Euclidian2

distance between the observed data set and each simulated data set is computed as the sum of squared3

differences of summary statistics weighted by the inverse of their variance in the entire set of simulated4

data. For the i-th data set, the distance is :5

di =

√√√√nstat∑
j=1

(sij − sobsj )2

Vj
(1)

in which sij is the j-th summary statistics from the i-th data set, sobsj is the j-th summary statistics6

from the observed data set and Vj is the variance of the the j-th summary statistics across all simulated7

data sets. Only the closest data sets are selected for further treatments. The latter includes a weighted8

local linear regression step aimed at improving the posterior distributions of the parameters (Beaumont9

et al., 2002). Basically, a multiple linear regression is performed in which summary statistics are the10

independent variables and parameters the dependent variables. But this regression is also local in the11

sense that more weight in the regression is given to data sets that are closest to the observed data set.12

This is performed by using a kernel function (the Epanechnikov kernel following Beaumont et al. (2002)13

:14

Kδ(d) =

{
(1.5/δ)(1− (d/δ)2), t ≤ δ
0, t > δ

(2)

Eventually, parameters are adjusted through this process as :15

φ∗ik = φik − (si − sobs)βk (3)

in which φik is the k-th parameter of the i-th selected data set, φ∗ik is the adjusted corresponding pa-16

rameter, si is the row vector of summary statistics of the i-th selected data set, sobs is the row vector of17

summary statistics of the observed data set and βk is the transposed k-th row vector of the regression18

coefficient matrix.19

The adjusted φ∗ik of the selected data sets are an approximate sample of the posterior distribution of20

parameters (Beaumont et al., 2002).21

2.10 Model checking22

Checking the model is crucial to statistical analysis (p161 in Gelman et al., 1995). Model checking (i.e.23

the assessment of the ı̈¿œı̈¿œ½goodness-of-fiẗı¿œı̈¿œ½ of a model ı̈¿œı̈¿œ½ parameter posterior combina-24

tion) is a facet of ABC analysis that has been so far neglected (but see Ingvarsson, 2008). Following25

Gelman et al. (1995; pp 159-163), we already implemented this option in DIY ABCv1.0, to measure26

the discrepancy between a model ı̈¿œı̈¿œ½ parameter posterior combination and a ı̈¿œı̈¿œ½real̈ı¿œı̈¿œ½27

data set by considering various sets of test quantities. These test quantities can be chosen among the28

large set of ABC summary statistics proposed in the program. This option is based on the same kinds29

of analysis as section 2.7. The main difference is the set of simulated data. Whereas in section 2.7, prior30

distributions of parameters have been used to simulate data sets, here we use posterior distributions of31

the same parameters, hence simulating data from the posterior predictive distribution.32

The first analysis is a principal component analysis in the space of summary statistics using data sets33

simulated with the prior distributions of parameters (exactly as in section 2.7) and the observed data34

as well as data sets from the posterior predictive distribution are represented on each plane of35

the PCA. If the model fits well the data, one should see on each PCA plane a wide cloud of data sets36

simulated from the prior, with the observed data set in the middle of a small cluster of datasets from the37

posterior predictive distribution.38

In the second analysis, each summary statistics of the observed data set is ranked against the distribution39

of the corresponding summary statistics from the posterior predictive distribution. Summary statistics40

play here the role of test statistics (p169 in Gelman et al., 1995).41

Since summary statistics are generally not sufficient, it is advised to use different sets of summary statis-42

tics to compute the posterior distribution of parameters on one hand and to check the model on the other43

hand (see Cornuet et al., 2010). This has been implemented in DIYABC.44
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2.11 Measures of performances1

As stressed in previous studies (e.g. Excoffier et al., 2005), the ABC appproach provides an efficient way2

of assessing its own performances for estimating posterior distributions of parameters. The reference3

table, the building of which represents generally 95 to 99% of the computing time, can be reused to4

analyse pseudo-observed (test) data sets obtained through simulation with known values of parameters.5

It is then rather quick and easy to evaluate the performance of the method for parameter estimation by6

computing statistics such as estimation biases or mean square errors.7

These measures of performance have been fully integrated into DIYABC. The performance measures8

computed by DIYABC are :9

the average relative bias : the difference between the point estimate (e) and the true value (v)divided10

by the true value, 1
n

∑n
i=1

ei−vi
vi

, averaged over the n test data sets,11

12

the square Root of the Relative Mean Square Error (RRMSE) : the square root of the aver-13

age square difference between the point estimate and the true value, divided by the true value,14 √
1
n

∑n
i=1( ei−vivi

)215

16

the square Root of the Relative Mean Integrated Square Error (RRMISE) : the square root17

of the average (over test data sets) of the integrated square error (measured on each test data set)18

divided by the true value,

√
1
n

∑n
i=1(

∑mi
j=1(xij−vi)2

miv2i
), xij and mi being the sampled values and the19

sample size of the posterior distribution in the i-th test data set, respectively.20

21

the Relative Mean Absolute Deviation (RMAD) : the average (over test data sets) of the mean22

absolute deviation (measured on each data set), divided by the true value, 1
n

∑n
i=1(

∑mi
j=1 |xij−vi|
mi|vi|23

24

the factor 2 :the proportion of test data sets for which the point estimate is at least half and at most25

twice the true value.26

the Relative Median Bias (RMB) : the 50% quantile of the bias (measured on each test data set)27

divided by the true value. The bias is computed respectively for each point estimate28

the Relative Median Absolute Deviation (RMedAD) : the 50% quantile (over test data sets) of29

the median (over each data set) of the absolute difference between each value of the posterior30

distribution sample and the true value divided by the true value.31

the Relative Median of the Absolute Error (RMAE) : the 50% quantile (over test data sets) of32

the absolute value of the difference between the point estimate (in each data set) and the true value33

divided by the true value.34

DIYABC considers the following three point estimates : mean, median and mode of the φ∗ik (sample of35

the posterior distribution of each parameter), as defined in subsection 1.7.36

Concerning the true value (v) appearing in the above formulae, DIYABC offers three possibilities :37

1. All values v are fixed by the user. If any one of these values is outside the limits given to the38

prior for the corresponding parameter, a warning message is issued but the analysis can proceed if39

needed.40

2. All values v are drawn from prior distributions. These distributions can also be different from those41

of priors. They may even not be overlapping (no warning message is issued whatever the user’s42

choice).43

3. All values v are drawn from posterior distributions (in order to obtain accuracy measures condi-44

tionally to the observed dataset).45

If you want to fix some parameter values and draw the other from distributions, choose the second option46

and give the same desired values as minimum and maximum for those fixed parameter values.47

48



DIYABC v2.1 20

In order to better assess the information brought by genetic data, DIYABC provides a double estimate1

of all these bias/precision statistics. As expected, the first one is based on genetic data given in the data2

file. The second one is computed as if there was no genetic information, i.e. estimates are based only3

on parameter priors. Technically, a sample of parameter values is drawn at random from the reference4

table. This sample of the same size of the sample of posterior values is used in place of the latter in all5

computations.6

2.12 Comparison of scenarios7

The ABC approach can also be used to compare possible scenarios for the same data file through the8

computation of the posterior probabilities of each scenario and this option is naturally implemented in9

DIYABC.10

11

2.12.1 Reference table12

First, the reference table can include as many scenarios as desired. By default, the prior probability of13

each scenario is uniform, that is each scenario will have approximately the same number of simulated14

data sets. But, if for any reason, one wants a different prior probability for each scenario, there is the15

possibility to do so.16

17

Scenarios are drawn according to their own prior probability and then only parameters that are defined18

for the drawn scenario are generated from their respective prior distribution. Scenarios may or may not19

share parameters.20

When conditions apply to some parameters (see subsection 2.4), the program provides the possibility of21

choosing between two options :22

1. parameter sets are drawn in their respective prior distributions until all conditions are fulfilled.23

2. a single parameter set is drawn and only if all condition are fulfilled, the simulation is performed24

and the data set is recorded in the reference table.25

When there is only one scenario, both options are equivalent, although in option 2, there might be less26

simulated data sets that are recorded than one asked. When there is more than one scenario, the second27

option can be viewed as a way to set prior probabilities on scenario that result from imposed conditions28

on parameters (see Miller et al. (2005) for an example).29

2.12.2 Posterior probability of scenarios30

The program DIYABC provides two estimates of the posterior probability of each scenario :31

a emphdirect estimate : This is simply the number of times that a given scenario is found in the32

first nδ simulated data sets once the latter, produced under several scenarios, have been sorted by33

ascending distances to the observed data set (i.e. the “closest” simulated data sets).34

35

a logistic regression estimate : Following M.A. Beaumont’s suggestion (Fagundes et al., 2007; Beau-36

mont, 2008), a polychotomic weighted logistic regression is performed on the first nδ data sets with37

the proportion of the scenario as the dependent variable and the differences between observed and38

simulated data set summary statistics as the independent variables. The intercept of the regression39

(corresponding to an identity between simulated and observed summary statistics) is taken as the40

point estimate. In addition, 95% confidence intervals are computed (Cornuet et al., 2008).41

Since both estimates are dependent upon the chosen threshold (δ), the program provides a range of 10042

estimates for the direct approach (for each one 100-th of nδ between 0 and nδ) and up to 10 estimates for43

the logistic regression estimates (e.g. one estimate for knδ/10 with k ∈ [1, 2, ...10] when the number of44

analyses is set to 10). These estimates are represented in two graphs, one for each kind of estimate. These45

two graphs can be printed and/or saved (in svg, jpg, png or pdf format). Values can also be output as a46

text file. In DIY ABCv2.0, a new possibility is offered to the user that may be useful when dealing with47

many summary statistics and many scenarios. In this particular case, the logistic regression has to deal48

with large matrices and the amount of needed memory on one hand and the computation time on the49
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other hand can become problematically large. An approximate solution is to replace summary statistics1

by the components of a linear discriminant analysis which reduces the number of independent variables2

to the smallest of number of summary statistics and scenarios. Although the result is only approximate,3

it can be a useful guide in some specific cases. The gain in time can be large. For instance, the time can4

be reduced by a 100X factor (Estoup et al., 2012).5

6

2.12.3 Confidence in scenario choice7

The program DIYABC offers a last option that allows one to evaluate the confidence in a scenario choice.8

To do so, we simulate test datasets (or pods), apply the same procedure for estimating their respective9

posterior probabilities and measure the proportion of times the right scenario has the highest posterior10

probability. More specifically DIYABC proposes three main options :11

(i) Compute confidence in scenario choice drawing scenario-parameter combinations into posterior12

distributions (cf. Posterior based error). Computing error rate conditionally to the observed dataset13

(i.e. focusing around the observed dataset by using the posterior distributions) provide a more relevant14

estimation of our ability to choose the true scenario in the vicinity of the observed dataset (which is the15

location of prime interest in the vast data space defined by the prior distributions) than blindly computing16

accuracy indicator over the whole prior space.17

(ii) Compute confidence in scenario choice drawing scenario-parameter combinations into prior dis-18

tributions (cf. Prior based error). Prior based error computation provides an estimate of a global error19

level over the whole (and usually huge) prior data space. Such computation can be useful for comparisons20

with the above posterior error rate, to focus investigation on a particular scenario and to select the best21

classifier and/or set of summary statistics (Pudlo et al. 2015). Two sub-options are proposed for the22

computation of prior based errors:23

- Global (prior error rate) in which pods are drawn from a random sample of scenario ID and parameter24

values in the prior distributions;25

- Scenario specific (prior error rate) in which pods are drawn from parameter prior distributions26

under a GIVEN scenario. This corresponds to the confidence in scenario choice option that was initially27

available in the previous version of the program (DIYABC v2.0). In this sub-option parameter values28

can also be fixed to given values.29
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3. The Graphic User Interface1

When launching the GUI, the home screen appears like this :2

3

4

You can already notice that DIYABC works with projects. This notion is new to version 2 of DIYABC.5

It is explained in subsection 3.1.6

3.1 What is a DIYABC Project ?7

A DIY ABC project is a unit of work materialized by a specific and unique directory. A project is defined8

by at least one observed data set and one reference table header file. These files are located in the Project9

directory which name includes an identifier, the date of creation and a number (between 1 and 100).10

11

The header file, always named header.txt, contains all information necessary to compute a reference12

table associated with the data : i.e. the scenarios, the scenario parameter priors, the characteristics of13

loci, the loci parameter priors and the summary statistics to compute. As soon as the first records of14

the reference table have been saved in the reference table file, always named reftable.bin and also15

included in the project directory, the project is ”locked”. This means that the header file can not be16

changed anymore. If one needs to change a scenario or a parameter prior, or a summary statistics, a new17

project needs to be defined. This is to guarantee that all subsequent actions performed on the project18

are in coherence with the current data and header files. It is of course strongly advised NOT to move19

files among projects. Incidentally, the header.txt file is only built when the project has been saved, the20

information progressively input by the user being saved in a series of temporary files.21

22

Once a sufficiently large reference table has been simulated, analyses can be performed. Their different23

output files are copied to the analysis directory included in the project directory, and containing as many24

directories as analyses performed. Hence, it is now much easier to know with certainty the conditions of25

each analysis.26

3.2 Options of the home screen27

The home screen above has two menus and several buttons.28

Let’s start with the menus. Below are shown all submenus :29
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1

The File menu has seven options, namely New project, Open project, Open recent projects,2

Save all projects, Settings, Simulate data set(s) and Quit. All are self explanatory.3

The Help menu has two options : About DIYABC which opens up a small window providing the names4

and address of the authors and Show logfile which gives access to a logfile viewer in which are recorded5

all actions and messages about the execution of the GUI.6

Just below the menu are five shortcuts to main File menu options.7

8

9

10

On the right, the field What’s this ? is an another way to get help on a specific GUI object :11

12

13

14

Eventually, below the logo, there are three buttons which are duplicate shortcuts :15

16

17

18

3.3 Defining a new project19

Defining a new project requires different steps which are not the same whether the data are SNPs or20

microsatellites/DNA sequences (MSS). Let start with an MSS project : click on one of the following :21

• File menu > New project > Microsatellites and/or sequences22

• the menu shortcut New MSS23
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• the bottom left button New Microsat/Sequence project1

or press simultaneously the Control and M keys.2

A new window appears in which the user can choose a location and a name for the new project as shown3

below :4

5

6

Let’s enter demo1 as the project name and click on the Create project button.7

The following screen appears :8

9

10

The demo1 project and all its future files will be located in the directory demo1 2012 5 31-1.11

3.3.1 Step 1 : choosing the data file12

We next need to choose the data file of the project. This is performed by clicking on the corresponding13

Browse button (previous screen). The usual file browsing screen appears (below) and one has to select14

a Genepop format data file, here data1.mss.15

16
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1

Clicking on the Open button leads to the following screen with the edit field filled with the name of the2

data file and some characteristics of this data file appearing on the screen (number of loci, individuals3

and samples).4

Below these fields are two panels indicating that we need to provide information about the Historical5

model (left panel) and about the Genetic data and associated Summary statistics (right panel). The red6

crosses on both panels will change to green checks once the corresponding information will be completed.7

8

9

10
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3.3.2 Inform the Historical model1

Click on the corresponding Set button. The following screen, familiar to users of previous versions,2

appears:3

4

5

Let’s enter a simple scenario in scenario 1 edit window and click on the Define priors button. We get6

this :7

8

9

The parameter prior frame allows to choose the prior density of each parameter. A parameter is10

anything in the scenario that is not a keyword (here sample and merge), nor a numeric value. In our11

example scenario, parameters are hence : N1, N2, N3, t1 and t2. In our example, we need to set the12

priors on t1 and t2 such that t2> t1. We can do it either by using the set condition button or by13

playing with the minimum and maximum values of the two parameters. It is worth stressing that the14
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omission of such conditional constraints on merge times (cf. a population needs to exists in the past to1

allow coalescence events in it) is one the most frequent implementation error made by DIYABC users. If2

forgotten a Â gene genealogy failure Â message pointing to the problematic scenario will appear when3

launching simulations. Note that the occurrence of a too large number of time conditional constraints4

within a scenario may substantially slow down simulations as a valid t parameter vector will be retain5

and run only once all conditions are fullfiled.6

7

If we click on the Check scenario button, the logic of the scenario is checked and if it is found OK,8

and if the scenario is drawable, the drawing appears on a new frame :9

10

11

The scenario can be saved by clicking on the SAVE button. The frame can be close by clicking on12

the CLOSE button.13

14

Since the scenario has been checked, we can validate and save the historical model by clicking on the15

VALIDATE AND SAVE button (bottom screen of p 21). We then go back to the project screen in which16

the historical model has now received the green check sign.17

18
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1
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3.3.3 Inform the Genetic model1

Click on the corresponding Set button. We get the following screen :2

3

4

On the left part of the screen, there is the list of loci, with their type (M for microsatellites or S for5

DNA sequences) and the motif size and allelic range for microsatellite loci only. Actually, the values for6

motif size and allelic range are just default values and do not necessarily correspond to the actual data.7

The user who knows the real values for its data is required to set the correct values at this stage. If the8

range is too short to include all values observed in the analysed dataset, a message appears in a box asking9

to enlarge the corresponding allelic range. Note that the allelic range is measured in number of motifs,10

so that a range of 40 for a motif length of 2 bp means that the difference between the smallest and the11

longest alleles should not exceed 80 bp. It is worth stressing that the indicated allelic range (expressed12

in number of continuous allelic states) corresponds to a potential range which is usually larger than the13

range observed from the analyzed dataset (cf. all possible allelic states have usually not been sampled).14

In practice it is difficult to assess the actual microsatellite constraints on the allelic range; to do that one15

needs allelic data from several distantly related populations/sub-species as well as related species which16

is rarely the case (see Pollock et al., 1998); (Estoup et al., 2002). We achieved a meta-analysis from17

numerous primer notes documenting the microsatellite allelic ranges of many (i.e. >100) different species18

(and related species). We used the corrective statistical treatment on such data proposed by (Pollock19

et al., 1998). Our results pointed to a mean microsatellite allelic range of 40 continuous states (hence20

the default allelic range value of 40 mentioned in the program). We also found, however, that range21

values greatly varied among species and among loci within species (unpublished results). We therefore22

recommend to use the following pragmatic behaviour when considering the allelic range of your analysed23

microsatellite dataset: (i) if the difference in number of motif of your locus is <40 motifs in the analysed24

dataset then leave the default allelic range value of 40. (ii) if the difference in number of motif of your25

locus is >40 motifs in your dataset then take Max allele size − Min allele size)/motif size + say 10 ad-26

ditional motifs to re-define the allelic range of the locus in the corresponding DIYABC panel (e.g. (20027

nu − 100 nu)/2 + 10 = 50 + 10 = 60 as allelic range).28

We then need to define at least one group of loci by clicking on the Add group button. We get this :29

30
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1

Suppose we want all loci in the same group because we consider that they all have similar mutational2

modalities. We select them like in any table, extending the selection with the Shift and Control keys3

(see below) :4

5

6

and then pressing the >> button :7

8
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1

Note that the Auto group button would have produced the same result of putting all the microsatel-2

lite loci in the same group.3

4

We then need to define the mutation model and the summary statistics of the locus group. Clicking5

on the Set mutation model button, the following screen appears :6

7

8

Once the mutation model of Group 1 is defined, we click on the VALIDATE button to go back to the9

previous screen. Clicking on the Set Summary statistics button, we get the following screen :10

11
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1

We define summary statistics by checking the corresponding boxes :2

3

4

Once finished, we click on the VALIDATE button to go back to the screen of p24. Now, we can5

validate also this screen which brings us back to the screen of p22. The latter looks now like this :6

7
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1

At that moment, the project directory includes the following files : a copy of the data file, and four2

configuration files : conf.analysis, conf.gen.tmp, conf.hist.tmp, conf.tmp. Note that the project is3

not yet saved. To save the project, we need either to save it explicitly by using the File menu (see below)4

or to start simulating data sets (next section). Saving the project results in saving the header.txt file5

in the project directory.6

7

3.4 Building the reference table8

Keeping on the current screen, indicate the required number of data sets to simulate for the reference9

table :10

11

12

Then click on the Run computations button. If things go well, you will soon see the progress both13

into the edit window ”Number of simulated data sets in the reference table” and in the progress bar14

below. Also, you have an estimate of the remaining time (at the left of the Run computations button):15

16
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1

When the computation is finished, the screen looks like this :2

3

4

3.5 Performing analyses5

We have now eveything necessary to perform analyses. The current screen shows two tabs : Reference6

table and Analyses. Let’s click on the Analyses tab. We get this new screen :7

8
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1

First, we need to define the analysis we want to perform. So we click on the Define new analysis2

button and get this new screen :3

4

5

We need to choose among the six possible types of analyses (actually, only four of them are possible,6

since the reference table includes a single scenario). We decide to first check whether the model (scenario7

and parameter prior definition) is off the target or not. This can be appreciated through the analysis8

denominated Pre-evaluate scenario prior combination. To illustrate the result, we also ask for a9

principal component analysis by checking the corresponding square. Eventually, we give the name of10

pre-eval1 to this first analysis. The screen now looks like this :11

12
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1

2

After clicking on the VALIDATE button, we go back to the previous screen. However, the new anal-3

ysis now appears on top of the analysis panel. For each analysis, this panel provides its name and type,4

the list of parameters that will be transmitted (in a coded way) to the computation program, a progress5

bar that approximates the progress of the analysis run, and four buttons. The right button has to be6

clicked to launch the analysis. The three left buttons provide a way to copy an analysis ( Copy button),7

to make some modifications ( Edit button) before launching it or to delete the analysis ( Del button).8

9

10

11

Let’s click on the Launch button. This analysis is very fast (ca 1 second) so that the progress bar12

shows almost immediately a 100% value :13

14
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1

2

To view results, just click on the View results button. After some seconds (while the program reads3

the PCA result file), we can see this :4

5

6

7

The results are shown PCA plane by PCA plane. Each (small) dot represents a simulated dataset from8

the reference table and the large yellow dot represents the observed data set. The initial components of9

datasets are the values of the summary statistics from which are computed the principal components. The10

four drop-lists (Scenario to draw, Horizontal axis component, Vertical axis component, Number11

of prior plots per scenario) can be used to explore further the results of the PCA.12

The graphic can be printed or saved ( PRINT and SAVE buttons, respectively). Clicking on the CLOSE13

button closes the result window. Eventually, clicking on the View numerical results opens up another14
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screen as shown below :1

2

3

4

This screen is obtained by computing for each summary statistics the proportion of simulated data5

(considering the total reference table) that have a value below the value of the observed dataset. A star6

indicates proportions lower than 5% or greater than 95% (two stars, <1% or >1%; three stars, <0.1% or7

>0.1%).8

9

As usual, results can be printed ( PRINT ) and/or saved ( SAVE ). Click on OK to leave this screen.10

11

Although we get one star for a few summary statistics, we conclude that our model is suitable enough12

to proceed to other ABC analyses.13

3.5.1 ABC parameter estimation14

Back on the screen of page 30, we click on the Define new analysis button. We choose the Estimate15

posterior distribution of parameters option and we call estim1 this second analysis :16

17
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1

2

We click on the VALIDATE button and get the following screen in which we can choose the scenario3

to use for this estimation. Since a single scenario has been defined, there is nothing else to do than to4

click on the VALIDATE button :5

6

7

8

We get then the following screen in which we can make several choices :9

• on the left hand side, we can choose the number of closest simulated datasets that will be used for10

the local linear regression (cf section 2.1).11

• below, we can select the transformation of parameter values that can generally improve the results12

(default = logit transformation).13
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• on the right hand, we can truncate the reference table to a specified number of datasets.1

• eventually, estimations can be performed either on original (i.e. raw) parameters, and/or combi-2

nations of parameters that are generally more estimable. Composite parameters are products of3

effective population sizes or times by mean mutation rate whereas Scaled parameters are ratios of4

effective population sizes or times by mean effective population size (computed from all terminal5

populations, i.e. N1, N2 and N3 in the present example).6

7

8

Apart from the number of closest datasets that we set at 10,000 (although 1,000 would be also a9

correct choice), we keep all other default values and click on the VALIDATE button. We get back to the10

Analysis control panel which now looks like this:11

12

13
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1

We click on the Launch button. The analysis progress is now visible :2

3

4

5

As long as the analysis is not terminated, we could stop it by clicking on the Stop button. Once this6

second analysis is finished, we can view its results by clicking on the View results button :7

8

9

10

Let’s have a look :11

12
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1

2

In the scrolling window, we get graphics showing the prior (red curve) and posterior (green curve)3

distributions of all parameters. Below each graphics are statistics (mean, median, mode and quantiles)4

of the posterior distribution. The latter are grouped in a table that appears when clicking on the upper5

left view numerical results button, showing this :6

7

8

9

We go back to the previous screen by cliking the OK button.10
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We can also have results for Composite or Scaled parameters. Below is an example of Scaled time1

parameters obtained by clicking on the Scaled radio button and scrolling the graphs window to the right:2

3

4

5

3.5.2 Bias and precision6

Let’s define a new analysis (click on the Define new analysis button) and choose the option Compute7

bias and precision on parameter estimations. We give it the name bias1 :8

9

10

11

In this kind of analysis, peudo-observed datasets are simulated with known values of parameters copy-12
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ing the exact configuration of the observed dataset in terms of sample sizes (taking into account missing1

data) and are submitted to the same ABC estimation process. If we assume that the evolutionary sce-2

nario is correct, the comparison of real and estimated values of parameters provide some information of3

the precision on the estimation process.4

We validate and get this screen :5

6

7

The demographic, historical and mutational parameters values of the pseudo-observed-datasets (pods)8

can be produced from a single scenario (here scenario 1 which is the only one avalaible in the present9

analysis) in three different ways:10

(i) they correspond to a set of fixed values chosen by the user;11

(ii) they are drawn drom the initial prior distributions (which can be modified by the user);12

(iii) they are drawn from the parameter posterior distributions estimated using a standard ABC13

procedure. Note that computing accuracy indicators conditionally to the observed dataset (i.e. focusing14

around the observed dataset by using the posterior distributions) provide a more relevant estimation of15

accuracy of parameter estimation in the vicinity of the observed dataset (which is the location of prime16

interest in the vast data space defined by prior distributions) than blindly computing accuracy indicator17

over the whole prior space.18

We first choose to draw parameter values from prior distributions by clicking on the option “are drawn19

from distributions (prior by default)” and on the VALIDATE button:20

21

We get this screen which allows us to choose distributions for demographic and historical parameters.22

23
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1

2

By default, the following screens suggest the prior distributions that have been used to build the3

reference table. However, these distributions can be edited if necessary. We decide not to change them4

and click on VALIDATE which brings us to the following screen :5

6

7

8

If we want to keep the same distributions for mutation parameters as when builduing the reference9

table, we just click on VALIDATE . If we need to change them, we click on Set mutation model which10

would bring the following screen :11

12
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After validating twice, we get the last screen necessary to define this kind of analysis :3

4

5

6

This screen is similar to that for parameter estimation (see section 3.5.1). The proposed (and po-7

tentially modifiable) parameters “number of selected data” and “Chosen number of simulated data” are8

those that will be used to proceed the ABC parameter estimations for each pod (with parameter values9

drawn from prior distributions). The default number of pods (i.e. test data sets) is 500 but it can be10

increased to e.g. 5,000 for a more precise estimations of the accuracy measures.11

After validating, we get back to the analysis panel with a third analysis defined :12

13
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The analysis takes some time to run compared to the previous one, because it simulates hundreds3

datasets and on each one, a full ABC estimation is performed. Then after some time, the analysis is4

finished:5

6

7

8

To view results, we click on the View results button.9
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The results are visible in a scrolling window :1

2

3

4

Accuracy measures are available for original, composite and scaled parameters. Note that there are5

two values given for each accuracy measures. The upper value is that of the statistics computed from6

the posterior distribution of parameters, i.e. using the genetic information provided by data. The7

lower value, noted between parentheses, is that of the statistics computed from the prior distribution of8

parameters, i.e. NOT using the genetic information provided by data but only that contained9

in prior distributions. The output file includes various measures of accuracy such as those detailed10

in section 2.11. Smaller accuracy values (e.g. small RMSE or RMedAD values) correspond to more11

precise parameter estimations. Each accuracy measure is associated with a second value given between12

parentheses corresponding to the accuracy measure without taking into account the genetic information13

provided by the data. The comparison of the two values provides a rough assessment of the amount14

of information provided by the genetic data in the inferential process. Note that some accuracy values15

computed using only prior information may be (surprisingly at first sight) smaller than accuracy values16

taking into account genetic data: this may occurs when the genetic data contain little information and17

produce systematic estimation biases.18

We then choose to run a new analysis of the same type but this time drawing parameter values19

from posterior distributions. We click (again) on the Define new analysis button) and choose (again)20

the option Compute bias and precision on parameter estimations. We give the name bias2 to21

this new analyis. After validating this new analysis, we click on the option “are drawn from posterior22

distributions” and on the VALIDATE button.23
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The screen immediately following is similar to that for parameter estimation (see section 3.5.1). The2

proposed (and potentially modifiable) parameters “number of selected data” and “Chosen number of3

simulated data” are those that will be used to both (i) make in a first phase an estimation of the4

parameter posterior distributions of the observed dataset (hence defining the distributions from which5

the parameter values of the pods will be drawn) and (ii) proceed the parameter estimations for each pod.6

7

The default number of pods (i.e. test data sets with parameter values drawn in this case from posterior8

distributions) is 500 but it can be increased to e.g. 5,000 for a more precise estimations of the accuracy9

measures.10
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After validating, we get back to the analysis panel with a third analysis defined (named bias2).1

2

As for bias1 analysis, the bias2 analysis takes some time to run because it simulates hundreds test3

datasets (usually between 500 and 5,000 pods) and on each one, a full ABC estimation is performed. Then4

after some time, the analysis is finished and one can view results by clicking click on the View results5

button.6

7

Outputs are similar to those of the bias1 analysis except that the pod’s parameters have been drawn8

from the posterior distributions of the observed dataset. The bias2 estimation hence provides a more9

relevant estimation of accuracy of parameter estimation in the vicinity of the observed dataset than10
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blindly computing accuracy indicator over the whole prior space as in the bias1 analysis. As for the bias11

analysis, the accuracy measures are available for original, composite and scaled parameters.2

3.5.3 Model Checking3

We now define another type of analysis called Model Checking which is used to evaluate how well the4

scenario and priors of parameters fit the data summarized by summary statistics. This is the last option5

on the following screen :6

7

8

9

We call this analysis mc1 and check the box to get a PCA performed. This PCA is computed in10

the same way compared to that of the first option (Pre-evaluate scenario prior combinations).11

However, new datasets simulated with parameters drawn from the posterior distributions of parameters12

are also represented on the different planes of the PCA (but not taken in the PCA computation).13

We validate the above screen and get the usual next screen :14

15
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that we just validate to get the following screen :3

4

5

6

In this screen which we have already seen, there is a new panel (bottom right) in which we can choose7

the number of datasets that we want to simulate from the posterior distributions of parameters. There is8

also a button Redefine summary statistics of group: shown by the pointer. This button allows to change9

the set of summary statistics (for a given group of loci chosen through the drop list on the right). Click-10

ing on this button opens up the usual following screen in which, by default, are checked the summary11

statistics in the reference table.12

13
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We decide to use all one-sample and two-sample summary stats :3

4

5

6

Note that when the set of summary statistics is changed (as here), it is necessary to also simulate7

a large number of datasets using parameter priors to get corresponding values of the newly introduced8

summary statistics. We validate twice and launch the analysis. When it is finished, we click on the9

View results button and get this screen:10
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3

Clicking on the View numerical results leads to the following screen which provides, for each individ-4

ual summary statistics, the value in the observed dataset as well as the proportion of data sets (simulated5

from the posterior) that have a value lower than the observed data set.6

7

8

9

Notice that in this computation, values that are in the interval [sobs− 0.001, sobs + 0.001] are counted10

for one half those that are outside the interval. This explains why the fourth digit of the proportion can11

be 0 or 5 while having simulated 1000 data sets.12

Here the conclusion is that the chosen model/posterior explain correctly the observed dataset (see Cornuet13
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et al. (2010) for further illustrations).1

3.5.4 Posterior probabilities of scenarios2

Consider a new example dataset in which three populations have been sampled. We want to decide which3

scenario is the best supported by data, a divergence scenario (scenario 1) or a split scenario in which the4

population 3 originates from an admixture between the populations 1 and 2 (scenario 2) :5

6

We first built a reference table with 1,000,000 simulated datasets (500,000 for each scenario) sum-7

marized with the same statistics as above and drawing parameter values into the prior distributions8

described in the next screen.9

10

We then define a new analysis that we call comp1 :11

12
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It is worth stressing here that it is possible to replace original summary statistics (SS) by discriminant3

scores by checking the box Linear discriminant analysis on SS . This option is useful when there are4

numerous scenarios and many summary statistics (see Estoup et al. 2012). However, in the present case,5

this is not necessary since the analysis with a relatively few original summary statistics and only two6

scenarios to be compared takes only a few seconds. After clicking on the VALIDATE button, we fill in7

the required fields, taking default values except for the number of local linear regression (on the second8

screen) that we set to 10:9

10

11

12

So that we get the following screen :13
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2

3

After validating the screen above, we launch the analysis which lasts a few seconds and press on the4

View results button. The following screen appears:5

6

7

8

Both analyses agree that scenario 1 is the best supported scenario in this comparison. If we click on the9

View numerical results , the program shows a subset of numerical values used in the previous screen (i.e.10

the probability values with their 95% confidence intervals for the 10 subsets of closest simulated data).11

Note that the 95% CIs can be used to ensure that probabilities are significantly different among scenarios.12

13
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3.5.5 Confidence in scenario choice3

This last type of analysis is aimed at evaluating with which level of confidence we can trust the previous4

analysis. To do so, we simulate test datasets (or pods), apply the same procedure for estimating their5

respective posterior probabilities and measure the proportion of times the right scenario has the highest6

posterior probability.7

Let’s define a new analysis, conf1 as below:8

9
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As for the previous analysis, it is possible to replace original summary statistics by discriminant scores3

(cf. “Linear discriminant analysis option” option; see Estoup et al. 2012). This is more useful here since4

confidence analyses can last hours. We hence choose to activate this option. If we do so, it is preferable5

to have previously computed the probabilities of scenarios from the observed dataset with the linear6

discriminant analysis option (cf. section 3.5.4) to homogenize treatments. Note that the computation7

of probabilities of scenarios from the observed dataset with the linear discriminant analysis option give8

similar results than those shown in section 3.5.4 (not shown).9

The next screen (below) proposes two options :10

(i) Compute confidence in scenario choice drawing scenario-parameter combinations into posterior11

distributions (cf. Posterior based error);12

(ii) Compute confidence in scenario choice drawing scenario-parameter combinations into prior distri-13

butions (cf. Prior based error).14

Let’s first consider posterior based error computations.15
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1

To compute “posterior” error rates, we simulate a large number of pseudo-observed datasets (pods)2

drawing (with replacement) the scenario ID and parameter values from the s simulated datasets closest3

to the observed dataset (i.e. the s datasets of the reference table with the smallest Euclidean distance).4

Typically, s = 500 but this number can be lowered to 100. For each pod produced this way, we apply the5

same procedure for estimating their respective posterior probabilities (as in section 3.5.4) and measure6

the proportion of times the right scenario has the highest posterior probability.7

8

Here we choose to draw pods in the s=500 (over 1,000,000) simulated datasets closest to the observed9

dataset. Scenario probabilities are estimated using both the direct approach (on the 500 closest datasets)10
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and the logistic approach (on the 1%=10,000 closest datasets). Computations are processed on a total1

of 1,000 test datasets (pods).2

Once the treatment is finished, we click on “view results”.3

4

The posterior error rate (also named “posterior predictive error”) is given as a proportion of wrongly5

identified scenarios over the 1,000 test datasets for both the direct and the logistic approaches. Here the6

true scenario had the highest posterior probability for 904 of the 1,000 test datasets with the logistic7

approach and the posterior error rate is hence equal to 0.096. The scenario choice is also detailed for8

each test dataset. Note the presence of a majority of scenario 1 and a minority of scenario 2 in the9

test datasets. This differencial proportion in scenario ID reflects the fact that a majority of scenario ID-10

parameters combination which give simulated datasets closest to the observed dataset are produced by11

the scenario 1 (which is expected when looking at the direct approach results in section 3.5.4). Computing12

error rate conditionally to the observed dataset (i.e. focusing around the observed dataset by using the13

posterior distributions) provide a more relevant estimation of our ability to choose the true scenario in14

the vicinity of the observed dataset (which is the location of prime interest in the vast data space defined15

by the prior distributions) than blindly computing accuracy indicator over the whole prior space.16

Let’s now consider prior based error computations. Prior based error computation provides an estimate17

of a global error level over the whole (and usually huge) prior data space. Such computation can be useful18

for comparisons with the above posterior error rate, to focus investigation on a particular scenario and to19

select the best classifier and/or set of summary statistics (Pudlo et al. 2015). We start a new confidence20

analysis (conf2) from the analyses pannel below, using again the linear discriminant analysis option.21
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Once having clicked on “validate” and “Prior based error”, two options are proposed:2

(i) Global (prior error rate) in which pods are drawn from a random sample of scenario ID and3

parameter values in the prior distributions;4

(ii) Scenario specific (prior error rate) in which pods are drawn from parameter prior distributions5

under a GIVEN scenario. This corresponds to the confidence in scenario choice option that was initially6

available in the previous version of the program (DIYABC v2.0).7

8

When clicking and validating the GLOBAL (prior error rate) option we go to the following screen.9
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1

This screen is similar to that for posterior error rate except that pods are NOT drawn from the2

s simulated datasets closest to the observed dataset BUT from a random sample of scenario ID and3

parameter values drawn in the prior distributions. We here again choose to estimate scenario probabilities4

using default options, i.e. using both the direct approach (on the 500 closest datasets) and the logistic5

approach (on the 1%=10,000 closest datasets), and computations are processed on a total of 1,000 test6

datasets (pods).7

Once the treatment is finished, we click on “view results”.8

9

The prior error rate (also named “prior predictive error) is given as a proportion of wrongly identified10
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scenarios over the 1,000 test datasets for both the direct and the logistic approaches. The scenario choice1

is also detailed for each test dataset. Note the presence of a an equal number of scenario 1 and 2 in the2

test datasets as expected when randomly scenario ID and parameter values from the prior distributions.3

The prior error rate is substantially different than the previous posterior error rate (i.e. higher in this4

case although it might be lower in other situations). The error levels may indeed be substantially different5

depending on the location of the pod in the data space. Indeed, some peculiar combination of scenario ID6

and parameter values may correspond to situations of strong (weak) discrimination among the compared7

scenarios.8

We now illustrate the second type of prior based error analysis: scenario specific (prior error rate)9

in which pods are drawn from parameter prior distribution under a GIVEN scenario. We start a new10

confidence analysis (conf3) and validate the options “Prior based error” + “Scenario specific (default11

option before version 2.1)”.12

In the following screen we choose to simulate pods under scenario 1 drawing parameter values into13

prior distributions.14

15

After validating default values for historical and mutational parameters, we launch the analysis. When16

it is done, we click on the View results button and get the following screen:17

18
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Posterior probabilities (with 95% credibility intervals) are given for each pod under the direct and3

logistic approaches. At the bottom, there is a summary of results, i.e. the number of times each scenario4

has the highest posterior probability under each approach:5

6

7

8

We can deduce the so-called type I error for scenario 1, which is the probability with which it is9

rejected although it is the true scenario : 153 using the direct method (or 159 using the regression10
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method) over 500, i.e. 0.306 (0.318). To have access to the type II error (probability of deciding for1

scenario 1 when it is not the true scenario), we need to run the same analysis but simulating according2

to all other scenarios (only scenario 2 in the present example) and counting decisions in favor of scenario3

1. Running the example analysis with scenario 2 gives 165 (or 141) over 500 in favor of scenario 1. This4

gives an estimate of a so-called type II error of 0.330 (0.282) for scenario 1.5

3.6 Simulating data sets6

The DIYABC program can also be used to simulate data sets, either microsatellite and/or DNA sequence7

data sets using our Genepop format, or SNP data sets using our specific format. This option is reachable8

through the main File menu as shown below :9

10

11

12

Clicking on e.g. the Microsatellites and/or sequences (Genepop format) opens up a dialog window in13

which one can choose the directory into which will be located the project and the future data files :14

15

16

17

Above, we decided to call demo2 this new directory and to locate it in the home/DIYABC/demo18

directory.19

Clicking on OK leads to usual screen:20

21
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We first inform the historical model clicking on the Set button under Historical model. We edit the3

scenario box as below:4

5

6

7

We click on the Set parameter values button. Arbitrary default values appear :8

9
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We change these values according to our needs and we click the Set sample size button, getting this3

screen:4

5

6

7

We input the needed sample sizes as below :8

9
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Clicking on the VALIDATE button, we get back to the previous screen showing that the Historical3

model is now completed:4

5

6

7

We have now to complete the Genetic data (click on the Set button under Genetic data). The fol-8

lowing screen appears:9

10
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We want a data set including three autosomal, two X-linked and one Y-linked diploid microsatellite3

loci and one mitochondrial sequence. We also need a sex ratio of one male for four females :4

5

6

7

We click on the OK button and get the following screen :8

9
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Our mitochondrial DNA sequence is only 500 nucleotides long and there is a slight excess of A+T3

(60%). We edit the corresponding cells :4

5

6

7

Since mutation models are different for microsatellites and DNA sequences, we define two groups by8

clicking twice on the Add group button :9

10
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We select the 6 microsatellite loci by clicking on the first locus name cell and shift-clicking on the3

sixth locus name cell :4

5

6

7

The six locus names are transferred into group 1 by clicking on the >> button :8

9
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Then the DNA sequence locus is selected :3

4

5

6

and transferred into group 2 in the same way :7

8
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We need now to define the mutation model of each group (note that we not any mutation model needs3

to be defined for SNP loci cf. section 2.4). Let’s click on the Set Mutation Model button of group 1:4

5

6

7

The usual default values appear. We want to exclude single nucleotide insertions/deletions (SNI muta-8

tions). So we set to 0 the Mean SNI rate and Minimum, Maximum and Shape of individual loci SNI rates :9

10
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Once this done, we go back to the previous screen by clicking on the VALIDATE button. Then we3

set the mutation model of the mitochondrial DNA sequence. The default values are as follows :4

5

6

7

The default mean mutation rate is not suited to mitochondrial DNA which generally evolves at a8

faster rate than nuclear DNA (Haag-Liautard et al., 2008). So we set its value to 10−8. For all other9

parameters, we just keep the default values:10

11
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After validating twice, we get back to the main screen :3

4

5

6

We require 10 simulated data sets :7

8
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We then click on the Run computation button. In a matter of seconds, the computation ends up:1

2

3

4

Using the file manager, we can check that ten new files (demo2 001.mss to demo2 010.mss) have been5

added to new directory :6

7

8

9

Opening e.g. the second one with a text editor, we can have a partial view of the simulated genotypes10

of the first population sample :11

12
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We can check that the sex ratio is correct : the number of males is one fourth the number of females.3

The type of each locus given after the name is also correct. All microsatellite allelic values are odd,4

in agreement with the motif length (2) and the absence of single nucleotide insertion/deletion. More5

interestingly, it gives an example of how X- and Y-linked microsatellite loci must be written for each sex6

(here 15 females and 18 males) in our Genepop format.7

In the same spirit and following similar implementation steps, the option “Simulate dataset(s)” allows8

producing SNP dataset files too (see the first demonstration screen of this section 3.6). The SNP data9

are produced following the Hudson’s simulation algorithm (Hudson 2002; Cornuet et al. 2014). Each10

locus will hence be characterized by the presence of at least a single copy of a variant over all genes11

sampled from all studied populations (i.e. pooling all genes genotyped at the locus). The format of the12

produced SNP genotype datasets is the DIYABC format chosen for SNPs and detailed in section 4.4.13

The produced dataset(s) can hence be directly analyzed using DIYABC as pseudo-observed dataset(s) for14

which the scenario and the parameter values are known. Note that it is possible to subsequently apply15

a different MAF criterion on the pseudo-observed dataset before running an ABC analysis by replacing16

in the headline of the pseudo-observed dataset the instruction <MAF=hudson> by <MAF=X.XX> (for17

instance <MAF=0.05>).18

3.7 The Settings option of the File menu19

Let us now detail what is under the Settings option of the File menu shown below :20

21
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Clicking on the Settings option opens up the following multitab window :1

2

3.7.1 Tab “various”3

The first tab “various” contains the following settings :4

1. What’s this is a help functionnality that allows the user to obtain a help message when pointing5

towards a specific feature of the graphic interface such as a button or an edit field. This help6

functionnality can be activated by checking the corresponding box.7

2. Checking this box is mainly for debugging purpose or signalling a bug.8

3. DIYABC is made of two programs : the graphic interface and a computation program. When the9

user clicks on buttons such as Run computation or Launch , the graphic interface programs sends10

a command that launches the computation program. To issue this command, the graphic interface11

needs to know where the computation program executable is located. There is a default location12

which depends on the operating system. Clicking on the box Use default executable check will direct13

the graphic interface to use the executable located in this default directory.14

4. You can also choose another location (e.g. if you want to use a distinct version of the executable)15

by clicking on the browse button.16

17

18

5. The next setting Particle loop size defines the number of data sets (n) that are simulated in a single19

block when building the reference table. The computation program proceeds as follows : it first20

simulate and compute summary statistics of n data sets. When this is done, it writes the results21

to the reference table file. The reason of doing like this is that computation can be multithreaded22

but not the file writing.23

6. The graphic interface can detect the number of cores of the computer processor. By default, it24

sets the number of threads of the computation program to this core number. However, if the user25

wants to keep some cores for other purposes, the number of threads can be reduced by on the26

corresponding button (drop down menu shown below).27



DIYABC v2.1 82

1

2

7. The next setting (Maximum log level) is for debugging pupose and/or signalling a bug (from3

1=low information level to 4=high information level).4

8. The graphic interface memorizes recently opened projects. The edit field is used to set the maximum5

of memorized recent projects.6

9. The last setting concerns the format of graphic files output by different analyses. Choice is shown7

below:8

9

10

Eventually, if changes have been made, they can be either saved or cancelled (two bottom buttons).11



DIYABC v2.1 83

3.7.2 Tab “appearance”1

Clicking on this tab results in the following screen :2

3

4

5

The window style can be chosen among the following (click on the upper drop down menu) :6

7

8

9

Likewise, the background color can be chosen among the following colours :10

11
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Eventually, one can change the font of texts appearing in the different windows by clicking on the3

corresponding button. A usual font menu then appears allowing the desired change :4

5

6

7

3.7.3 Tab “cluster”8

The third tab is related to the use of a computer cluster to perform computations of the reference table.9

If you have access to a computer cluster and if the computer cluster runs a scheduler queuing system,10

then you can use it to generate the reference table (detailed in section 5). You will need to :11

1. check the box Use a cluster (...)12

2. indicate the number of data sets produced by each single job of the queue13

3. indicate the number of cores used by each single job of the queue14

4. indicate the number of concurrent jobs running at the same time on the cluster15

5. indicate the seed to start the generation of RNG files. Leave it blank or write None to use a random16

seed17

The next two text frames deals with first and last parts of the main script running on the cluster. This18

bash script will submit jobs to the scheduler queuing system :19

1. the first part is not editable as it include the variables used by DIYABC GUI frontend20



DIYABC v2.1 85

2. the last part deals with the jobs submission. You can edit it to match the specification of your1

scheduler : submission syntax, queue, ... By default, the code targets a Grid Engine cluster. Please2

ask for help to your cluster system administration.3

Clicking on the Run computation button generates a bundle (i.e. a set of zipped files) including all you4

need to generate your reference table. You need to transfer the bundle in your cluster account and run it.5

Once all conputations are done and all the reference table parts are merged in one, you have to transfert6

the merged reference table back to your DIYABC project on your own computer to proceed subsequent7

analyses with the DIYABC GUI. All above steps are further detailed in section 5..8

9

10

3.7.4 Tabs “MM Microsats” and “MM Sequences”11

These two tabs are used to modify the default values of mutation parameters (MM means Mutation12

Model), for microsatellites and DNA sequences respectively. As an example, here is the screen corre-13

sponding to the tab “MM Sequences” :14

15
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The initial default values have been obtained through literature compilation and are valid for a large3

number of species. However, some species may have values that differ substantially from most species.4

For instance, the mutation rate of some Drosophila species are much lower than the values encountered5

in many other species (Schug et al., 1997; V’azquez et al., 2000) and is outside the range indicated in the6

initial default values.7
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4. Implementation details1

4.1 Software design2

DIYABC v2 has been designed in a very different way compared to version 1. Version 1 was a single3

executable file were the GUI 5 and computation codes were highly intricated and both written in the same4

language (Delphi). In version 2, the GUI and the computation codes have been completely separated.5

Actually, the GUI is a script written in python and all computations are included in a program written6

in C++. In opposition to Delphi which is restricted to a single OS (Windows), python and C++ can7

be used with the main three OS (Linux, Mac and Windows), allowing version 2 to be operated under all8

three OS.9

The GUI uses the Qt graphic library. The computation code is linked to the openmp library allowing a10

better use of multicore/multiprocessor computers.11

The GUI can launch the computation program with the right parameters and keeps track of the progress12

of the latter through small log files. The GUI can launch as many computation programs as there are13

open projects, but no more than one computation program per project. A lock file located in the project14

directory is created when the computation program is launched by the GUI and removed when the15

computation program has normally terminated. When the computation program has exited anormaly,16

the GUI issues an error message trying to explain where the programm failed.17

4.2 Files18

The program uses and produces various files which we will describe now.19

4.2.1 data files20

Data files are text files that contain information about the samples : number and names of microsatellite21

markers, multilocus genotypes of individuals. The basic format is that of the Genepop software (Ray-22

mond and Rousset, 1995) and data files produced by DIYABC are under this format. Microsatellite23

genotypes must be noted with 3 (haploid) or 6 (diploid) digits, these three digit numbers24

being the length in nucleotides of the corresponding PCR products. In addition, we have added25

some features to this basic format in order to use sequence data. All these additions are explained in26

section 4.4. SNP data correspond to a different file format, also detailed in section 4.4.27

Any extension is accepted for datafile names, including no extension at all. If the data file is simulated28

with DIYABC, the extension is mss for microsatellite/DNA sequence data and snp for SNP data. The29

next page shows examples of data sets saved.30

4.2.2 reference table files31

Reference table files are binary files which include two successive parts :32

• The first part is a header which contains information necessary to read the second part, such as the33

number of scenarios, or the number of parameters of each scenario.34

• The second part contains simulated data set records, each record containing the scenario number,35

the parameter and summary statistics values.36

Each time a reference table is created or increased (each time the Run computation button is pressed), a37

text file is created in the project directory with the name first records of the reference table X.txt38

in which X is an integer number starting at 0 and increasing each time the Run computation button is39

pressed. This file provides a text version of the first n newly created records of the reference table (n40

being equal to the Particle loop size, see section 3.7.3).41

42

4.2.3 output files43

As already seen, DIYABC achieves different analyses : comparison of scenarios, estimation of posterior44

distribution of parameters, model checking, computation of bias and mean square errors and evaluation of45

confidence in scenario choice. Each analysis has its own output which can be printed and saved. Graphs46

5Graphic User Interface
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are saved under the chosen format and non-graphic output are saved in text files.1

2

We now describe all the files produced by each type of analysis. These files are located in directories3

(one directory per analysis) gathered in the analysis subdirectory of the project directory. Below is an4

example of the TOYTEST2 2012 9 26-1 project directory substructure:5

6

7

8

Note that each directory name starts with the name of analysis followed by the type of analysis, e.g.9

bias for a bias/precision analysis or comparison for a comparison of scenarios. In addition, when a10

picture has been saved, the corresponding file is located under a subdirectory named pictures (e.g. at11

the bottom of the figure above).12

Pre-evaluate scenario prior combinations : This analysis can produce two output files named ACP.txt13

and locate.txt. The former is the output of the Principal Component Analysis and the latter14

that of the analysis giving the proportion of simulated data sets which have a value below the15

observed value for every summary statistics. This latter file is exactly what appears in the GUI.16

The structure of the ACP.txt file is the following. The first line indicates the number of points17

of the PCA, the number of PCA components (axes) and the inertia of each component, all values18

are separated by a single space. The second line provides the components of the observed data. It19

starts with a zero which corresponds to the scenario number in the following lines. Each subsequent20

line provides the components of data simulated according to a given scenario which number is at21

the beginning of the line. If one or more PCA figures have been saved, the corresponding files are22

saved in the pictures subdirectory. They are named as refTable PCA X Y N.pdf, with X and Y23

giving the axis numbers and N being the number of represented points.24

Compute posterior probabilities of scenarios : This analysis produces three output text files : compdirect.txt,25

complogreg.txt and compdirlog.txt. The latter is directly visualized in the GUI when clicking26

the view numerical results button. The first two files are used by the GUI to elaborate the two27

graphics (Direct approach and Logistic regression). Again, if graphics have been saved, the corre-28

sponding file(s) is(are) in the pictures subdirectory of the analysis directory.29

Evaluate confidence in scenario choice : This analysis produces a single output file, confidence.txt,30

the content of which is visualized in the GUI.31

Estimate posterior distributions of parameter : Nine files are written as output of this type of32

analysis :33
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• three files mmmq original.txt, mmmq composite.txt and mmmq scaled.txt contain the statis-1

tics (mean, median, mode and quantiles) for the original, composite and scaled parameters,2

respectively. They are visualized in the GUI when clicking the view numerical results button.3

• three files paramstatdens original.txt, paramstatdens composite.txt and paramstatdens scaled.txt4

are used by the GUI to produce the graphics showing prior/posterior distribution.5

• three files phistar original.txt, phistar composite.txt and phistar scaled.txt con-6

tains the φ∗ values of the original, composite and scaled parameters, respectively. These files7

can be used for instance to redraw posterior distributions, e.g. with the R software.8

As already mentionned, saved graphics are located in a pictures subdirectory.9

Compute bias and precision of parameter estimations : Three files bias original.txt, bias composite.txt10

and bias scaled.txt are produced by this type of analysis. All three files are visualized in the11

GUI.12

Perform model-checking The output files of this type of analysis are the same as those of the Pre-13

evaluate scenario prior combinations analysis (see above). The only difference is in the names of14

the two text files which start with mc for model checking.15

16

17

In addition, the GUI program writes several files in the project directory :18

command.txt : this text file contains the history of commands issued by the GUI to be achieved by19

the computation program.20

conf.analysis : this text file contains information about analyses.21

conf.gen.tmp : this text file contains information about the loci, the genetic parameters and the sum-22

mary statistics.23

conf.hist.tmp : this text file contains information about the scenario and the historical parameters.24

conf.th.tmp : This text file contains the title line of the reference table.25

conf.tmp : This text file contains the name of the dataset and the number of parameters and summary26

statistics.27

header.txt : This text file is a concatenation of the previous four files and is red by the computation28

program.29

xxx.DIYABCproject : This text file contains the path to the xxx project.30

RNGstate0000.bin : This binary file contains the current state of the random generator.31

initrng.out : This text file contains information about the initialization of the random generator.32

33

34

The computation program writes the following files in the project directory :35

reftable.log : This text file is produced when a reftable is increased. It provides the GUI with informa-36

tion about the progress of computations : achieved number of records, time left.37

statobs.txt : This text file is written every time an analysis is performed. It contains the values of38

summary statistrics for the observed data set.39

The following files are output by the computation program everytime it has been launched by a specific40

command of the GUI (their use is only for debugging purposes and they are all in the project directory)41

:42

general.out : when computing a reftable.43

pre-ev.out : when performing a Pre-evaluate scenario prior combinations analysis.44
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compare.out : when performing a Compare scenarios analysis.1

confidence.out : when performing a Confidence in scenario choice analysis.2

estimate.out : when performing a ABC parameter estimation analysis.3

bias.out : when performing a bias-precision analysis.4

modelChecking.out : when performing a model checking analysis.5

When performing a Bias-precision or a Confidence in scenario choice analysis, the computation program6

simulates what we call pseudo-observed datasets. The parameter and summary statistics values of these7

pseudo-observed datasets are written in a text file named pseudo-observed datasets xxx.txt in which8

xxx is the name given to the analysis.9

4.3 Missing data10

Missing or undetermined genotypes should be coded as 000 (haploid microsatellites), 000000 (diploid11

microsatellites), < [ ] > (haploid sequences) or < [ ][ ] > (diploid sequences) and 9 (SNP) in the data12

file.13

Missing data are taken into account in the following way. For each appearance of a missing genotype in14

the observed data set, the programs records the individual and the locus. When simulating data sets,15

the program replaces the simulated genotype (obtained through the coalescence process algorithm) by16

the missing data code at all corresponding locations. All summary statistics are thus computed with the17

same missing data as for the observed data set.18

WARNING : datafiles with virtually any amount of missing data can be analysed by DIYABC. How-19

ever, for each locus a minimum of one genotyped individual per population is required. This is because20

summary statistics cannot be computed at a given locus in a given population if only missing data are21

present.22

4.4 Data files23

There are two different incompatible formats for data files, one for SNP loci and the other for microsatel-24

lite/DNA sequence data.25

For the microsatellite/DNA sequence data, the format already presented in version 1 of DIYABC is an26

extended Genepop format. The additional features are :27

1. In the title line appears the sex ratio noted between < and > under the form < NM = rNF >,28

in which r is the ratio of the number of females per male (e.g. < NM = 2.5NF > means that29

the number of males is 2.5 times the number of females; for a balanced sex ratio one should write30

< NM = 1.0NF >). Since the title is generally only copied, this addition should not interfere with31

other programs using Genepop datafiles. Also if there is no such sex ratio addition, DIYABC will32

consider by default that NM=1.0NF.33

2. After the locus name, there is an indication for the category of the locus which is < A > for34

autosomal diploid loci, < H > for autosomal haploid loci, < X > for X-linked (or haplo-diploid)35

loci, < Y > for Y-linked loci and < M > for mitochondrial loci. If no category is noted, DIYABC36

will consider the locus as autosomal diploid or autosomal haploid depending on the corresponding37

genotype of the first typed individual.38

3. Genotypes of microsatellite loci are noted with six digit numbers (e.g. 190188) if diploid and by39

three digit numbers (e.g. 190) if haploid.40

4. Sequence locus are noted between < and > . In addition each sequence alleles/haplotypes is noted41

between brackets. For instance, a haploid sequence locus will be noted < [GTCTA] > and a diploid42

sequence locus < [GTCTA][GTCTT] >. Sequences may contain undetermined nucleotides which43

will be denoted Â N Â or Â - Â. Note that all sequence alleles/haplotypes have to be of similar44

length. The length of shorter sequence allele/haplotypes needs to be adjusted to the larger sequence45

allele/haplotype by adding Â N Â or Â - Â symbols at the end of the sequences. It is worth stressing46

that, aT a given locus, only the portion of the sequence shared by all individuals of the dataset will47

be used for computing summary statistics. We therefore advise removing locus-individual sequence48

data with too many “N” and replace them by missing data. Finally, remember that this version of49
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the program does not consider insertion-deletion mutations, mainly because there does not seem to1

be much consensus on this topic.2

5. Missing microsatellite genotypes are noted 000 if haploid or 000000 if diploid.3

6. Missing sequence alleles/haplotypes are noted < [ ] > if haploid or < [ ][ ] > if diploid.4

For SNP data, the datafile format includes:5

• a first line (headline) providing the sex-ratio as above (the e.g.< NM = 1.0NF >for a bal-6

anced sex ratio), the required MAF (minimum allele frequency criterion; e.g. <MAF=0.05> or7

<MAF=hudson>), and any text that can be used as a title . Information on the sex ratio and the8

MAF can be anywhere in this line. The MAF is computed pooling all genes genotyped over all stud-9

ied population samples. For instance, the specification of a MAF equal to 5% (i.e. <MAF=0.05>)10

will automatically select a subset of m loci characterized by a minimum allele frequency > 5%11

among the l locus of the observed dataset. In agreement with this, only m locus with a MAF>5%12

will be retained in a simulated dataset (simulated loci with a MAF≤5% will be discarded). Writing13

<MAF=hudson> (or omitting to write any instruction with respect to the MAF) will bring the14

program to use the standard Hudson’s algorithm without further selection as done so far in the15

previous version of DIYABC.16

• a second line starting with the three keywords IND SEX POP, separated by at least one space,17

followed by as many letters as SNP loci, the letter giving the location of the locus as above (< A >18

for autosomal diploid loci, < H > for autosomal haploid loci, < X > for X-linked (or haplo-diploid)19

loci, < Y > for Y-linked loci and < M > for mitochondrial loci). Letters are separated by a single20

space.21

• as many lines as there are genotyped individuals, with the code-name of the individual, a letter (M22

or F ) indicating its sex, a code-name for its population and the values (0, 1 or 2) of the number23

of the (arbitrarily chosen) reference allele at each SNP locus. For instance in the case autosomal24

diploid SNP loci, we have 0 = homozygous genotype for the non reference allele, 1 = heterozygous25

genotype for the reference allele, 2 = homozygous genotype for the reference allele. It is worth26

noting that for autosomal haploid loci (denoted H), as well as for mitochondrial loci (denoted M)27

and Y-linked loci (denoted Y), the SNP genotypes will be 0 or 1.28

• Only a subset of the SNP loci included in the data file can be considered (selected) in the simulations29

and hence in subsequent ABC analyses. For instance one can choose to select in the corresponding30

panel the SNP loci 1 to 1000 of a data file including a total of say 10000 loci. This allows running31

faster simulations and processing independant replicate ABC analyses of sets of 1000 SNP loci by32

considering loci 1 to 1000 and then 1001 to 2000, and so on, in separate analyses.33

• Following Hudson’s (2002) criterion, only polymorphic SNP loci (over the entire dataset) are consid-34

ered. Monomorphic SNP loci (over the entire dataset) are automatically filtered by the program. It35

is preferable, however, that the user removes himself all monomorphic loci from his/her (observed)36

dataset before submitting it to DIYABC.37

• Before running any simulation, DIYABC provides a text file including the set of SNP loci selected38

from the observed dataset (e.g. polymorphic loci 1 to 1000 with a MAF=0.05). This file is named39

“UserDataFileName.bin.txt”.40

Below are three examples of data sets that can be analyzed with DIYABC.41

In the first example, this data set includes two population samples, each of 12 diploid individuals (842

females and 4 males in the first sample and 5 females and 7 males in the second sample). As deduced43

from the letter between < and > on the locus name lines (see page 25), these individuals have been44

genotyped at 3 microsatellite loci (1 autosomal < A >, 1 X-linked < X > and 1 Y-linked < Y >) and 345

DNA sequence loci (1 autosomal. 1 X-linked and 1 mitochondrial < M >). The species sex-ratio, given46

in the title line, is of three males for one female (< NM = 3NF >) or in other words, the number of47

males equals three times the number of females.48



DIYABC v2.1 92

1



DIYABC v2.1 93

In the second example, the species is haploid. Individuals have been genotyped at three autosomal1

microsatellite loci and one mitochondrial DNA sequence locus. The species being haploid (deduced from2

the presence of autosomal haploid loci), no indication of the sex-ratio appears in the title line.3

In the third example, the species is diploid and was genotyped at 23 SNP loci: 20 autosomal loci, 14

X-linked locus, 1 Y-linked locus and 1 mitochondrial locus. The first line provides the title which includes5

the species sex-ratio and the MAF (minimum allele frequency). The second line indicates: individual6

name in column 1, individual sex in column 2 (M for male, F for female, 9 or any other letter if unknown),7

population name in column 3 and one column per SNP locus (letter A for an autosomal locus, X for an X-8

linked locus, Y for a Y-linked locus and M for a mitochondrial locus). Columns are separated by one or more9

spaces. SNP genotypes are coded 0, 1 or 2 (9 for missing data) according to the number of reference10

alleles at the corresponding locus. Note that the sex has no influence on simulations for autosomal,11

mitochondrial or haploid loci (any sex can be hence declared). For individuals with an unknown sex12

(denoted 9, see IND P1 2, P1 3 and P2 15), data for autosomal (as well as mitochondrial and haploid)13

loci will be taken into account and simulated. On the other hand, the genotypes of X-linked and Y-linked14

loci for the same IND P1 2, P1 3 and P2 15 with unknown sex cannot be safely determined and are15

hence noted 9 for missing data.16
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5. Cluster version1

The ABC method requires simulating many data sets, which is time consuming. Typically, one to several2

millions data sets are needed to build up an interresting reference table and this process can last several3

hours to several days. Hence it might be useful to take advantage of a computer grid cluster.4

This part of the notice describe how to use a cluster with the GUI frontend in Section 5.1. Advices5

to distribute the workload in jobs on the cluster are given in Section 5.2. For advanced users who need6

more information, Section 5.3 describes the jobs that are sent to the queueing system of the cluster, and7

Section 5.4 sums up how DIYABC produces independent random number generators (RNG’s).8

5.1 Using a cluster with DIYABC9

You can prevent DIYABC from simulating data sets on your own computer by checking use a cluster in10

the setting panel of the GUI. Then, instead of computing the simulations on your computer, the GUI11

frontend will prepare a bundle for the cluster. Note that, while this option remains checked, DIYABC12

will not compute any reftable on your computer.13

Generating a reference table with a cluster is a three stage process.14

1st stage Configure the required parameters in the GUI frontend and generate the cluster bundle (set15

of zipped files).16

2nd stage Transfer the bundle to the cluster and run it.17

3rd stage Transfer back the reference table and include it to the project18

In the cluster tab of the settings panel, you can configure the useful parameters to send correct orders to19

the job scheduler of your cluster. The bash script named launch.sh of the cluster bundle produced by20

the GUI will sent those orders to the job scheduler of the cluster. To be able to write this bash script,21

the GUI needs informations on our cluster you can give by filling the fields of the cluster tab.22

23

24

25

5.1.1 Configuring distribution of the workload on the cluster26

You have to understand and edit six parameters of the cluster settings. We shall recall here that the27

“DIYABC binary” program is able to take advantage of multi-core computers. Thus to divde the whole28

workload, the cluster bundle can run several jobs, and configure each job to use several CPU cores of a29
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given machine in the cluster6. The six parameters might be given by filling the blank fields of the cluster1

tab, and are as follow.2

• “Number of simulations oer job (granularity)” or numSimulatedDatasetByJob: This integer indi-3

cates the number of data sets simulated by each single job. It represents the granularity of your4

computations on the cluster.5

• “Number of cores per job” or coresPerJob: This integer indicates how many CPU cores will be6

used by each job.7

• “Maximum number of jobs running at the same time in the cluster” or maxConcurrentJobs: This8

integer indicates the maximum number of jobs allowed to run simultaneously on the cluster.9

• “First seeds of the RNG’s” or seed: This integer indicates to DIYABC the seeds to initialize the10

RNG’s. By writing -1 you ask the program to use random seeds (recommended). Starting from11

user-defined seeds is mainly for testing or debbugging purposes.12

• “The DIYABC binary is on”: This option determines whether the DIYABC binary program13

(general) is already installed on the cluster (then set cluster) or if the bundle has to import14

a suitable binary (then set local).15

• “Path to the DIYABC binary” or DIYABCPath: This string indicates the path of a DIYABC binary16

program that can run on the machines of the cluster. Note that the binary can be on your own17

computer (you can browse your file system to choose the correct DIYABC binary with the dedicated18

button) or on your cluster, in which case it is highly recommanded to specify an absolute path.19

5.1.2 Dealing with the job scheduler of the cluster20

The two last text boxes of the cluster tab in the settings panel deal with the main script launch.sh21

executed on the master node of the cluster. This script generates a pool of RNG files, submits the jobs22

to the scheduler queuing system using a node.sh script, monitors the jobs and merges all reftable files23

into a single reftable file when all jobs are completed. The last box (which is the only one that be edited)24

deals with the jobs submission. By default, launch.sh targets a Grid Engine cluster. You probably25

need to customise this script to fit your cluster configuration (scheduler system, queue name, ...). You26

should mainly need to modify the ##### EDIT ##### section to comply with the rules of the job queueing27

system of the cluster. Please ask for help to your cluster system administrator.28

5.1.3 Transfer the bundle to the cluster and run it29

Once you have checked the box Use a cluster (...), configured the cluster parameters in the settings panel30

and saved them, you need to click on the Run computation button from your project panel. The program31

will ask you the name of the tar archive you will have to copy on the cluster to run the computations.32

This tar archive can be copied to your cluster account by many ways (for instance with the help an sftp33

client like FileZilla or WinSCP). Once the archive is on your cluster working directory, you can log in34

your cluster account with a shell console and untar your archive by typing :35

ta r −xvf <yourTarArchiveName . tar>
cd yourTarArchiveName

36

37

This will create a directory with all the files needed to run DIYABC, namely38

1. general : the DIYABC binary program or executable39

2. header.txt : the header file40

3. launch.sh : the main script to run41

4. node.sh : the script that will be runned by your scheduler for each job42

5. < yourData.mss > : the data file43

6The multi-threaded capacity of DIYABC was programmed with the OpenMP API. This means that DIYABC can use
several cores in a single computer but, contrary to MPI-based program, a single job cannot use several cores distributed on
different computers. So please be sure to use an apropriate parallele environment to submit your jobs. Ask to your cluster
system administrator.
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You can now run the main script by typing ./launch.sh in the shell console. If everything was set1

correctly, you can monitor the progression of the computations in the console. For instance, for a total2

of 50,000 data sets to be produced through 5 jobs of 10,000 data sets:3

, numbers=left, numberstyle=, stepnumber=1, numbersep=5pt, backgroundcolor=, showspaces=false, showstringspaces=false, showtabs=false,

frame=single, rulecolor=, tabsize=4, captionpos=b, breaklines=true, breakatwhitespace=false, title=, keywordstyle=, commentstyle=, stringstyle=,

escapeinside=%**), morekeywords=*, deletekeywords=

>launch . sh
∗∗ Generation o f RNG f i l e s :
. / g ene ra l −p . / −n ” t : 1 ; c : 5 ; s :1038 ”

∗∗ jobs submition :

qsub −N n 1 t e s t −q shor t . q −cwd node . sh 10000 /home/dehneg/DIYABCtest 1
test . mss
Your job 111598 ( ” n 1 t e s t ” ) has been submitted

qsub −N n 2 t e s t −q shor t . q −cwd node . sh 10000 /home/dehneg/DIYABCtest 2
test . mss
Your job 111599 ( ” n 2 t e s t ” ) has been submitted

qsub −N n 3 t e s t −q shor t . q −cwd node . sh 10000 /home/dehneg/DIYABCtest 3
test . mss
Your job 111600 ( ” n 3 t e s t ” ) has been submitted

qsub −N n 4 t e s t −q shor t . q −cwd node . sh 10000 /home/dehneg/DIYABCtest 4
test . mss
Your job 111601 ( ” n 4 t e s t ” ) has been submitted

qsub −N n 5 t e s t −q shor t . q −cwd node . sh 10000 /home/dehneg/DIYABCtest 5
test . mss
Your job 111602 ( ” n 5 t e s t ” ) has been submitted

∗∗ monitor ing :
0/5 f i n i s h e d 0% ( t o t a l : 0)
1/5 f i n i s h e d 20% ( t o t a l : 10000)
1/5 f i n i s h e d 20% ( t o t a l : 10000)
2/5 f i n i s h e d 40% ( t o t a l : 20000)
4/5 f i n i s h e d 80% ( t o t a l : 40000)
5/5 f i n i s h e d 100% ( t o t a l : 50000)

∗∗ r e f t a b l e s concatenat ion :
. / g ene ra l −p /home/dehneg/DIYABCtest −q 2>&1 concat . out
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Al l the r e s u l t f i l e s have been concatenated in to r e f t a b l e . bin
See concat . out output f i l e for l o g s
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

4

5

Once the monitoring phase starts, you can quit launch.sh and restart it at any time. The batch6

script launch.sh will not resubmit jobs that have already be sent to the queueing system of the cluster.7

5.1.4 Transfer back the reference table and include it into your computer project8

Once your final reftable.bin file has been produced, you need to transfer it from the cluster to your9

own computer (with, e.g., an sftp client, see above). The Import and merge reftable file option10

from your project menu is the correct way to include the imported reference table into your project. Be11

careful that DIYABC do not inspect the imported reference table and do not backup the old reference12

table before merging them. You will not be able to recover from any error during this last stage except13

if you backup your old reference table.14
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5.2 Advices to distribute the workload on a cluster1

The six parameters of the cluster settings tab allow you to optimize your use of the cluster according to2

your access limitations, the workload of the cluster from other users and its queueing policy. For instance,3

if your cluster is overloaded and if the waiting time in queue is long, then it is preferable to choose a high4

amount of simulations per job. On the contrary, if a queue for short jobs is free while the other queues5

are overloaded, then it is preferable to choose a low amount of simulations per job and to submit them to6

the short queue. . . Note also that increasing the number of cores per job generally increases the queueing7

waiting time. But remember that a job with 40 cores will not increase the reference table faster than 408

jobs with one core each.9

10

Both parameters coresPerJob and maxConcurrentJobs are used to initialize a set of independent11

RNG’s (see Section 5.4 below). One caveat of our way of producing independent RNG’s is the need12

to simultaneously initiate all RNG’s that will be used. Before starting the jobs queue submission, the13

main script launch.sh will produce of a pool of coresPerJob× maxConcurrentJobs generators, stored14

in maxConcurrentJobs “RNG files”. Then, each job will randomly choose one RNG file that is not15

currently in use by other concurrent jobs, to initiate its own coresPerJob parallel RNG’s and store the16

last states of thoses generators at the end of the computation. Be careful, if you use lots of jobs and cores17

simultanuously, initialisation of the RNG’s will be time consuming, see Fig. 1.18

number of jobs (t) number of cores per job (c)
1 4 8 16 32 40 80

100 20” 1’20” 3’ 10’ 20’ 26’ 30’
200 50” 3’ 7’ 20’ 40’ 50’ 1h10’
500 2’ 8’ 25’ 50’ 1h40’ 2h06’ 2h45’
1000 4’ 16’ 50’ 1h40’ 2h10’ 2h45’

Figure 1: RNG files Time Generation. As shown in section 5.4, one caveat of the RNG method is the obligate

generation of all the RNG files at once (generating the RNG files one by one for each job on a cluster is possible but will

result in a dangerous bias). The second caveat of the RNG method is a consequence of the first one, ie the time needed

to generate the RNG files increases depending on the number of RNG files t and the number of cores c available for each

RNG file. Once a file is generated, it is not possible to add cores.

5.3 A detailed description of each job19

The jobs sent to the queueing system of the cluster are given in the script node.sh. This script can be20

decomposed into the following sequential stages:21

1. Create a jobid name according to the following pattern : <node hostname>-n-<sequential number22

of the job>-pid<pid of nodes.sh execution>-<a random number> (pid mean Process IDenti-23

fier).24

2. Use the scheduler temporary directory if the scheduler provide a TMPDIR environment variable or25

create a working temporary directory /tmp/tmpDIYABC <job id> on the cluster node.26

3. Choose a RNG file from the pool of RNG files created by launch.sh. (It means that the node must27

access your DIYABC yourTarArchiveName directory in your working directory.)28

4. Run DIYABC binary program (of course !).29

5. Copy periodically the reftable log file to the yourTarArchiveName directory. Thus, launch.sh can30

inform the user about the progress of the computations (through the total amount of simulations31

already performed).32

Note that, as long as a job (node.sh) is using a RNG file, the RNG file in the yourTarArchiveName33

directory is replaced by a lock file named <the choosen RNG file name>.lock and a flag file named34

the <choosen RNG file name> <date of the run> <job id>. The flag file contain the local pid of the35

job on the node of DIYABC. Once a job has finished and updated the RNG file, it removes the lock and36

flag files and copy back the updated RNG file.37
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5.4 A note on the random number generators1

By nature, a random number generator (RNG) is a sequential algorithm, as described in Figure 2 below.2

Indeed, we shall describe a RNG by its updating function f changing deterministically the internal state.3

Each time the user requires a new realization of the uniform distribution over [0; 1), the algorithm derives4

a value uk from the current internal state ik and then updates this state with f . Hence a first and5

important issue for parallel Monte Carlo computations is to design independent RNGs that might run in6

parallel while minimizing the communications between processors. It is quite standard to use as many7

RNGs as computing cores in the computer or in the cluster of computers.8

i0 i1 i2 i3 i4 i5 i6 . . .

u0 u1 u2 u3 u4 u5 u6 . . .

f f f f f f

Figure 2: Random Number Generator. A RNG is an algorithm that

produces a sequence of floating numbers, says u0, u1, . . ., that resembles

a sequence of independant random numbers, uniformly distributed over

[0; 1). It uses a sequence of internal states, say i0, i1, . . ., which are com-

puted by reccurence, namely, ik+1 = f(ik). The first internal state i0 is

often named the seed.

The second version of DIYABC uses the Dynamic Creator (DCMT) of Matsumoto and Nishimura9

(2000) to look for a set of independent Mersenne-Twister generators. Actually, the updating function f10

of a Mersenne-Twister generator is parametrized by a few integer numbers. The output of the DCMT is a11

set of N updating functions, say {f (1), . . . , f (N)}, producing independent streams. That is, the n-th RNG12

is a sequence of iternal states i
(n)
0 , i

(n)
1 , i

(n)
2 , . . . satisfying i

(n)
k+1 = f (n)(i

(n)
k ) that gives rise to a sequence of13

independent, uniformly distributed numbers u
(n)
0 , u

(n)
1 , u

(n)
2 , . . .. We found that the DCMT was simple to14

use and gave good results. There is no limitation on the number N of RNGs it produces. Once initialized,15

the different RNGs do not require any communication between them and each of them runs as quickly as16

a single Mersenne-Twister generator. But an important limitation is that it is impossible to add a new17

RNG to the set produced by the DCMT. Practically, this means that we have to know a priori a bound18

on the number of jobs working together in parallel. See section 5.19
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